Logo Море(!) аналитической информации!
IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware
Скидка до 20% на услуги дата-центра. Аренда серверной стойки. Colocation от 1U!

Миграция в облако #SotelCloud. Виртуальный сервер в облаке. Выбрать конфигурацию на сайте!

Виртуальная АТС для вашего бизнеса. Приветственные бонусы для новых клиентов!

Виртуальные VPS серверы в РФ и ЕС

Dedicated серверы в РФ и ЕС

По промокоду CITFORUM скидка 30% на заказ VPS\VDS

VPS/VDS серверы. 30 локаций на выбор

Серверы VPS/VDS с большим диском

Хорошие условия для реселлеров

4VPS.SU - VPS в 17-ти странах

2Gbit/s безлимит

Современное железо!

2008 г.

Базы данных. Вводный курс

Сергей Кузнецов

Назад Содержание Вперёд

12.3. Общие принципы организации данных во внешней памяти в SQL-ориентированных СУБД

В этом разделе кратко обсуждаются основные подходы к организации данных во внешней памяти, принятые в современных SQL-ориентированных СУБД. В большинстве случаев они основаны на идеях, заложенных в System R, хотя, конечно, в любой развитой системе имеются собственные приемы, которые здесь обсуждаться не будут.

SQL-ориентированные СУБД обладают рядом особенностей, влияющих на организацию внешней памяти. Наиболее важным автору кажутся следующие особенности:

  • Наличие двух уровней системы: уровня непосредственного управления данными во внешней памяти (а также обычно управления буферами оперативной памяти, управления транзакциями и журнализацией изменений БД) и языкового уровня (уровня, реализующего язык SQL). При такой организации подсистема нижнего уровня должна поддерживать во внешней памяти набор базовых структур, конкретная интерпретация которых входит в число функций подсистемы верхнего уровня.
  • Поддержка таблиц-каталогов. Информация, связанная с именованием объектов базы данных и их конкретными свойствами (например, структура ключа индекса), поддерживается подсистемой языкового уровня. С точки зрения структур внешней памяти таблица-каталог ничем не отличается от обычной таблицы базы данных.
  • Регулярность структур данных. Поскольку основным объектом модели данных SQL является плоская таблица, основной набор объектов внешней памяти может иметь очень простую регулярную структуру.
  • Необходимость обеспечения возможности эффективного выполнения операторов языкового уровня как над одной таблицей (простые селекция и проекция), так и над несколькими таблицами (наиболее распространено и трудоемко соединение нескольких таблиц). Для этого во внешней памяти должны поддерживаться дополнительные «управляющие» структуры – индексы.
  • Наконец, для выполнения требования надежного хранения баз данных необходимо поддерживать избыточность хранения данных, что обычно реализуется в виде журнала изменений базы данных.

Соответственно возникают следующие разновидности объектов во внешней памяти базы данных:

  • строки таблиц – основная часть базы данных, большей частью непосредственно видимая пользователям;
  • управляющие структуры – индексы, создаваемые по инициативе пользователя (администратора) или верхнего уровня системы из соображений повышения эффективности выполнения запросов и обычно автоматически поддерживаемые нижним уровнем системы;
  • журнальная информация, поддерживаемая для удовлетворения потребности в надежном хранении данных;
  • служебная информация, поддерживаемая для удовлетворения внутренних потребностей нижнего уровня системы (например, информация о свободной памяти).

12.3.1. Хранение таблиц

Существуют два принципиальных подхода к физическому хранению таблиц. Наиболее распространенным является покортежное хранение таблиц (единицей физического хранения является кортеж). Естественно, это обеспечивает быстрый доступ к целому кортежу, но при этом во внешней памяти дублируются общие значения разных кортежей одной таблицы и, вообще говоря, могут потребоваться лишние обмены с внешней памятью, если нужна часть кортежа.

Альтернативным (менее распространенным) подходом является хранение таблицы по столбцам, т.е. единицей хранения является столбец таблицы с исключенными дубликатами. Естественно, что при такой организации суммарно в среднем тратится меньше внешней памяти, поскольку дубликаты значений не хранятся; за один обмен с внешней памятью в общем случае считывается больше полезной информации. Дополнительным преимуществом является возможность использования значений столбца таблицы для оптимизации выполнения операций соединения. Но при этом требуются существенные дополнительные действия для сборки целого кортежа (или его части).

Поскольку гораздо более распространено хранение по строкам, рассмотрим немного более подробно этот способ хранения таблиц (в дополнение к тому, что говорилось в разделе 12.2 Основные понятия, цели и общая организация System R). Типовой, унаследованной от System R, структурой страницы данных является та, которая показана на рис. 12.1.

Эту организацию хранения кортежей можно в целом охарактеризовать следующим образом:

  • Каждый кортеж обладает уникальным идентификатором (tid), не изменяемым во все время существования кортежа и позволяющим выбрать кортеж в основную память не более чем за два обращения к внешней памяти. Структура tid следует из рис. 12.1.
  • Обычно каждый кортеж хранится целиком в одной странице. Из этого следует, что максимальная длина кортежа любой таблицы ограничена размерами страницы. Возникает вопрос: как быть с «длинными» данными, которые в принципе не помещаются в одной странице? Применяется несколько методов. Наиболее простым решением является хранение таких данных в отдельных (вне базы данных) файлах с заменой «длинного» данного в кортеже на имя соответствующего файла. В некоторых системах такие данные хранились внутри базы данных в отдельном наборе страниц внешней памяти, связанном физическими ссылками. Оба эти решения сильно ограничивают возможность работы с длинными данными (как, например, удалить несколько байт из середины 2-мегабайтной строки?). В настоящее время все чаще используется метод, предложенный много лет тому назад в проекте Exodus [3.13], когда «длинные» данные организуются в виде B-деревьев последовательностей байт.
  • Как правило, в одной странице данных хранятся кортежи только одной таблицы. Существуют, однако, варианты с возможностью хранения в одной странице кортежей нескольких таблиц. Это вызывает некоторые дополнительные расходы по части служебной информации (при каждом кортеже нужно хранить информацию о соответствующей таблице), но зато иногда позволяет резко сократить число обменов с внешней памятью при выполнении соединений.
  • Изменение схемы хранимой таблицы с добавлением нового поля не вызывает потребности в физической реорганизации таблицы. Достаточно лишь изменить информацию в описателе таблицы и расширять кортежи только при занесении информации в новое поле.
  • Поскольку таблицы могут содержать неопределенные значения, необходима соответствующая поддержка на уровне хранения. Обычно это достигается путем хранения соответствующей шкалы при каждом кортеже, который в принципе может содержать неопределенные значения.
  • Проблема распределения памяти в страницах данных связана с проблемами синхронизации и журнализации и не всегда тривиальна. Например, если в ходе выполнения транзакции некоторая страница данных опустошается, то ее нельзя перевести в статус свободных страниц до конца транзакции, поскольку при откате транзакции удаленные при прямом выполнении транзакции и восстановленные при ее откате кортежи должны получить те же самые идентификаторы.
  • Распространенным способом повышения эффективности СУБД является кластеризация таблицы по значениям одного или нескольких столбцов. Полезной для оптимизации соединений является совместная кластеризация нескольких таблиц.
  • С целью использования возможностей распараллеливания обменов с внешней памятью иногда применяют схему декластеризованного хранения таблиц: кортежи с общим значением столбца декластеризации размещают на разных дисковых устройствах, обмены с которыми можно выполнять параллельно.

Что же касается хранения таблицы по столбцам, то основная идея состоит в совместном хранении всех значений одного (или нескольких) столбцов. Для каждого кортежа таблицы хранится кортеж той же степени, состоящий из ссылок на места расположения соответствующих значений столбцов.

12.3.2. Индексы

Как бы не были организованы индексы в конкретной СУБД, их основное назначение состоит в обеспечении эффективного прямого доступа к кортежу таблицы по ключу. Обычно индекс определяется для одной таблицы, и ключом является значение ее поля (возможно, составного). Если ключом индекса является возможный ключ таблицы, то индекс должен обладать свойством уникальности, т.е. не содержать дубликатов ключа. На практике ситуация выглядит обычно противоположно: при объявлении первичного ключа таблицы автоматически заводится уникальный индекс, а единственным способом объявления возможного ключа, отличного от первичного, является явное создание уникального индекса. Это связано с тем, что для проверки сохранения свойства уникальности возможного ключа, так или иначе, требуется индексная поддержка.

Поскольку при выполнении многих операций уровня SQL требуется сортировка кортежей таблиц в соответствии со значениями некоторых полей, полезным свойством индекса является обеспечение последовательного просмотра кортежей таблицы в заданном диапазоне значений ключа в порядке возрастания или убывания значений ключа.

Наконец, одним из способов оптимизации выполнения эквисоединения таблиц (наиболее распространенная из числа дорогостоящих операций) является организация так называемых мультииндексов для нескольких таблиц, обладающих общими атрибутами. Любой из этих атрибутов (или их набор) может выступать в качестве ключа мультииндекса. Значению ключа сопоставляется набор кортежей всех связанных мультииндексом таблиц, значения выделенных атрибутов которых совпадают со значением ключа.

Общей идеей любой организации индекса, поддерживающего прямой доступ по ключу и последовательный просмотр в порядке возрастания или убывания значений ключа является хранение упорядоченного списка значений ключа с привязкой к каждому значению ключа списка идентификаторов кортежей. Одна организация индекса отличается от другой, главным образом, в способе поиска ключа с заданным значением.

B+-деревья

Наиболее популярным подходом к организации индексов в базах данных является использование техники B+-деревьев. Техника B- и B+-деревьев была предложена в начале 1970-х гг. Рудольфом Байером (Rudolf Bayer) и Эдом Маккрейтом (Ed McCreight) [3.17]. С точки зрения внешнего логического представления B-дерево – это сбалансированное сильно ветвистое дерево во внешней памяти. Сбалансированность означает, что длина пути от корня дерева к любому его листу одна и та же. Ветвистость дерева – это свойство каждого узла дерева ссылаться на большое число узлов-потомков. С точки зрения физической организации B-дерево представляется как мультисписочная структура страниц внешней памяти, т.е. каждому узлу дерева соответствует блок внешней памяти (страница). В B+-дереве внутренние и листовые страницы обычно имеют разную структуру.

Типовая структура внутренней страницы B+-дерева показана на рис. 12.2.


Рис. 12.2. Типовая структура внутренней страницы B+-дерева

При этом выдерживаются следующие свойства:

  • ключ1 ключ2 ... ключm;
  • в странице дерева Nm находятся ключи k со значениями ключm <= k <= ключm+1.

Листовая страница обычно имеет следующую структуру, показанную на рис. 12.3.


Рис. 12.3. Структура листовой страницы B+-дерева

Листовая страница обладает следующими свойствами:

  • ключ1 < ключ2 < ... < ключk;
  • списокr – упорядоченный список идентификаторов кортежей (tid), включающих значение ключr;
  • листовые страницы связаны одно- или двунаправленным списком.

Поиск в B+-дереве – это прохождение от корня к листу в соответствии с заданным значением ключа. Заметим, что поскольку B+-деревья являются сильно ветвистыми и сбалансированными, для выполнения поиска по любому значению ключа потребуется одно и то же (и обычно небольшое) число обменов с внешней памятью. Более точно, в сбалансированном дереве, где длины всех путей от корня к листу одни и те же, если во внутренней странице помещается n ключей, то при хранении m записей требуется дерево глубиной logn(m). Если n достаточно велико (обычный случай), то глубина дерева невелика, и производится быстрый поиск.

Основной «изюминкой» B+-деревьев является автоматическое поддержание свойства сбалансированности. Рассмотрим, как это делается при выполнении операций занесения и удаления записей.

При занесение новой записи выполняются следующие действия.

  • Поиск листовой страницы. Фактически, производится обычный поиск по ключу. Если в B+-дереве не содержится ключ с заданным значением, то будет получен номер страницы, в которой ему надлежит содержаться, и соответствующие координаты внутри страницы.
  • Помещение записи на место. Естественно, что вся работа производится в буферах оперативной памяти. Листовая страница, в которую требуется занести запись, считывается в буфер, и в нем выполняется операция вставки. Размер буфера должен превышать размер страницы внешней памяти.
  • Если после выполнения вставки новой записи размер используемой части буфера не превосходит размера страницы, то на этом выполнение операции занесения записи заканчивается. Буфер может быть немедленно вытолкнут во внешнюю память или временно сохранен в основной памяти в зависимости от политики управления буферами.
  • Если же возникло переполнение буфера (т.е. размер его используемой части превосходит размер страницы), то выполняется расщепление страницы. Для этого запрашивается новая страница внешней памяти, используемая часть буфера разбивается примерно пополам (так, чтобы вторая половина также начиналась с ключа), и вторая половина записывается во вновь выделенную страницу, а в старой странице модифицируется значение размера свободной памяти. Естественно, модифицируются ссылки по списку листовых страниц.
  • Чтобы обеспечить доступ от корня дерева к заново заведенной странице, необходимо соответствующим образом модифицировать внутреннюю страницу, являющуюся предком ранее существовавшей листовой страницы, т.е. вставить в нее соответствующее значение ключа и ссылку на новую страницу. При выполнении этого действия может снова произойти переполнение теперь уже внутренней страницы, и она будет расщеплена на две. В результате потребуется вставить значение ключа и ссылку на новую страницу во внутреннюю страницу-предка выше по иерархии и т.д.
  • Предельным случаем является переполнение корневой страницы B+-дерева. В этом случае она тоже расщепляется на две, и заводится новая корневая страница дерева, т.е. его глубина увеличивается на единицу.

При удалении записи выполняются следующие действия.

  • Поиск записи по ключу. Если запись не найдена, то удалять ничего не нужно.
  • Реальное удаление записи в буфере, в который прочитана соответствующая листовая страница.
  • Если после выполнения этой подоперации размер занятой в буфере области оказывается таковым, что его сумма с размером занятой области в листовых страницах, являющихся левым или правым братом данной страницы, больше, чем размер страницы, операция завершается.
  • Иначе производится слияние с правым или левым братом, т.е. в буфере производится новый образ страницы, содержащей общую информацию из данной страницы и ее левого или правого брата. Ставшая ненужной листовая страница заносится в список свободных страниц. Соответствующим образом корректируется список листовых страниц.
  • Чтобы устранить возможность доступа от корня к освобожденной странице, нужно удалить соответствующее значение ключа и ссылку на освобожденную страницу из внутренней страницы – ее предка. При этом может возникнуть потребность в слиянии этой страницы с ее левым или правым братом и т.д.
  • Предельным случаем является полное опустошение корневой страницы дерева, которое возможно после слияния последних двух потомков корня. В этом случае корневая страница освобождается, а глубина дерева уменьшается на единицу.

Как видно, при выполнении операций вставки и удаления свойство сбалансированности B+-дерева сохраняется, а внешняя память расходуется достаточно экономно.

Проблемой является то, что при выполнении операций модификации слишком часто могут возникать расщепления и слияния. Чтобы добиться эффективного использования внешней памяти с минимизацией числа расщеплений и слияний, применяются более сложные приемы, в том числе:

  • упреждающие расщепления, т.е. расщепления страницы не при ее переполнении, а несколько раньше, когда степень заполненности страницы достигает некоторого уровня;
  • переливания, т.е. поддержание равновесного заполнения соседних страниц;
  • слияния 3-в-2, т.е. порождение двух листовых страниц на основе содержимого трех соседних.

Следует заметить, что при организации мультидоступа к B+-деревьям, характерного при их использовании в СУБД, приходится решать ряд нетривиальных проблем. Конечно, грубые решения очевидны, например, возможен монопольный захват B+-дерева (т.е. его корневого блока) на все выполнение операции модификации. Но существуют и более тонкие решения, рассмотрение которых выходит за пределы материала этой книги.

Хэширование

Альтернативным и достаточно популярным подходом к организации индексов является использование техники хэширования. Это очень обширная тема, которая заслуживает отдельного рассмотрения. Ограничимся здесь лишь несколькими замечаниями. Общей идеей методов хэширования является применение к значению ключа некоторой функции свертки (хэш-функции), вырабатывающей значение меньшего размера. Значение хэш-функции затем используется для доступа к записи.

В самом простом, классическом случае свертка ключа используется как адрес в таблице, содержащей ключи и записи. Основным требованием к хэш-функции является равномерное распределение значение свертки (одним из распространенных видов «хороших» хэш-функций являются функции, выдающие остаток от деления значения ключа на некоторое простое число). При возникновении коллизий (одна и та же свертка для нескольких значений ключа) образуются цепочки переполнения. Главным ограничением этого метода является фиксированный размер таблицы. Если таблица заполнена слишком сильно или переполнена, но возникнет слишком много цепочек переполнения, и главное преимущество хэширования – доступ к записи почти всегда за одно обращение к таблице – будет утрачено. Расширение таблицы требует ее полной переделки на основе новой хэш-функции (со значением свертки большего размера).

Идея доступа к данным на основе хэширования настолько привлекательна (потенциальная возможность за одно обращение к памяти получить требуемые данные), что от нее невозможно отказаться при работе с данными во внешней памяти. Исходная идея кажется очевидной: если при управлении данными на основе хэширования в основной памяти хэш-функция вырабатывает адрес требуемого элемента, то при обращении к внешней памяти необходимо генерировать номер блока дискового пространства, в котором находится запрашиваемый элемент данных. Основная проблема относится к коллизиям. Если при работе в основной памяти потенциально возникающими потребностями дополнительного поиска информации при возникновении коллизий можно, вообще говоря, пренебречь (поскольку время доступа к основной памяти мало), то при использовании внешней памяти любое дополнительное обращение вызывает существенные накладные расходы. Основные методы хэширования для поиска информации во внешней памяти направлены на решение именно этой задачи.

В основе подхода расширяемого хэширования (Extendible Hashing) [3.14] лежит принцип использования деревьев цифрового поиска в основной памяти. В основной памяти поддерживается справочник, организованный на основе бинарного дерева цифрового поиска, ключами которого являются значения хэш-функции, а в листовых вершинах хранятся номера блоков записей во внешней памяти. В этом случае любой поиск в дереве цифрового поиска является «успешным», т.е. ведет к некоторому блоку внешней памяти. Входит ли в этот блок искомая запись, обнаруживается уже после прочтения блока в основную память.

Проблема коллизий переформулируется следующим образом. Как таковых, коллизий не существует. Может возникнуть лишь ситуация переполнения блока внешней памяти. Значение хэш-функции указывает на этот блок, но места для включения записи в нем уже нет. Эта ситуация обрабатывается так. Блок расщепляется на два, и дерево цифрового поиска переформируется соответствующим образом. Конечно, при этом может потребоваться расширение самого справочника.

Расширяемое хэширование хорошо работает в условиях динамически изменяемого набора записей в хранимом файле, но требует наличия в основной памяти справочного дерева.

Идея линейного хэширования (Linear Hashing) [3.15] состоит в том, чтобы можно было обойтись без поддержания справочника в основной памяти. Основой метода является то, что для адресации блока внешней памяти всегда используются младшие биты значения хэш-функции. Если возникает потребность в расщеплении, то записи перераспределяются по блокам так, чтобы адресация осталась правильной.

12.3.3. Журнальная информация

Структура журнала обычно является сугубо частным делом конкретной реализации. Отметим только самые общие свойства.

Журнал обычно представляет собой чисто последовательный файл с записями переменного размера, которые можно просматривать в прямом или обратном порядке. Обмены производятся стандартными порциями (страницами) с использованием буфера оперативной памяти. В грамотно организованных системах структура (и тем более, смысл) журнальных записей известна только компонентам СУБД, ответственным за журнализацию и восстановление.

Поскольку содержимое журнала является критичным при восстановлении базы данных после сбоев, к ведению файла журнала предъявляются особые требования по части надежности. В частности, обычно стремятся поддерживать две идентичные копии журнала на разных устройствах внешней памяти.

12.3.4. Служебная информация

Для корректной работы подсистемы управления данными во внешней памяти необходимо поддерживать информацию, которая используется только этой подсистемой и не видна подсистеме языкового уровня. Набор структур служебной информации зависит от общей организации системы, но обычно требуется поддержание следующих служебных данных:

  • Внутренние каталоги, описывающие физические свойства объектов базы данных, например, число атрибутов таблицы, их размер и, возможно, типы данных; описание индексов, определенных для данной таблицы и т.д.
  • Описатели свободной и занятой памяти в страницах данных. Такая информация требуется для нахождения свободного места при занесении кортежа. Отдельно приходится решать задачу поиска свободного места в случаях некластеризованных и кластеризованных таблиц (в последнем случае приходится дополнительно использовать кластеризованный индекс). Как уже отмечалось, нетривиальной является проблема освобождения страницы в условиях мультидоступа.
  • Связывание страниц одной таблицы. Если в одном файле внешней памяти могут располагаться страницы нескольких таблиц (обычно к этому стремятся), то нужно каким-то образом связать страницы одной таблицы. Тривиальный способ использования прямых ссылок между страницами часто приводит к затруднениями при синхронизации транзакций (например, особенно трудно освобождать и заводить новые страницы таблицы). Поэтому стараются использовать косвенное связывание страниц с использованием служебных индексов. В частности, известен общий механизм для описания свободной памяти и связывания страниц на основе B-деревьев.

12.4. Заключение

В этой лекции была кратко описана экспериментальная реляционная СУБД System R, оказавшая гигантское влияние на становление современной технологии баз данных. Были рассмотрены основные цели проекта System R, общая архитектура системы, основные структуры данных внешней памяти и интерфейс подсистемы управления внешней памятью.

Далее были обсуждены основные подходы к организации внешней памяти, применяемые в современных СУБД. Конечно, в любой конкретной SQL-ориентированной СУБД используется ряд собственных приемов организации хранения таблиц и индексов, но практически во всех случаях общие принципы похожи на те, которые описаны в разд. 12.2.

Назад Содержание Вперёд

Бесплатный конструктор сайтов и Landing Page

Хостинг с DDoS защитой от 2.5$ + Бесплатный SSL и Домен

SSD VPS в Нидерландах под различные задачи от 2.6$

✅ Дешевый VPS-хостинг на AMD EPYC: 1vCore, 3GB DDR4, 15GB NVMe всего за €3,50!

🔥 Anti-DDoS защита 12 Тбит/с!

VPS в России, Европе и США

Бесплатная поддержка и администрирование

Оплата российскими и международными картами

🔥 VPS до 5.7 ГГц под любые задачи с AntiDDoS в 7 локациях

💸 Гифткод CITFORUM (250р на баланс) и попробуйте уже сейчас!

🛒 Скидка 15% на первый платеж (в течение 24ч)

Новости мира IT:

Архив новостей

IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware

Информация для рекламодателей PR-акции, размещение рекламы — adv@citforum.ru,
тел. +7 495 7861149
Пресс-релизы — pr@citforum.ru
Обратная связь
Информация для авторов
Rambler's Top100 TopList This Web server launched on February 24, 1997
Copyright © 1997-2000 CIT, © 2001-2019 CIT Forum
Внимание! Любой из материалов, опубликованных на этом сервере, не может быть воспроизведен в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав. Подробнее...