Logo Море(!) аналитической информации!
IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware
Бесплатный конструктор сайтов и Landing Page

Хостинг с DDoS защитой от 2.5$ + Бесплатный SSL и Домен

SSD VPS в Нидерландах под различные задачи от 2.6$

✅ Дешевый VPS-хостинг на AMD EPYC: 1vCore, 3GB DDR4, 15GB NVMe всего за €3,50!

🔥 Anti-DDoS защита 12 Тбит/с!

VPS в 21 локации

От 104 рублей в месяц

Безлимитный трафик. Защита от ДДоС.

🔥 VPS до 5.7 ГГц под любые задачи с AntiDDoS в 7 локациях

💸 Гифткод CITFORUM (250р на баланс) и попробуйте уже сейчас!

🛒 Скидка 15% на первый платеж (в течение 24ч)

2006 г.

Абстрактные типы данных (АТД)

Лекция из курса Основы объектно-ориентированного программирования

Мейер Бертран
Интернет Университет Информационных Технологий, INTUIT.ru


Продолжение
Начало

От абстрактных типов данных к классам

Итак, у нас имеется отправная точка - элегантная математическая теория для моделирования структур данных и, как мы только что видели, в целом - программ. Но наша цель - это архитектура ПО, а не математическая или даже теоретическая информатика! Не сбились ли мы с нашего пути? Отнюдь. При поиске подходящей модульной структуры, основанной на типах объектов, АТД предоставляют механизм описания высокого уровня, не связанный с особенностями реализации. Это приведет нас к фундаментальным структурам ОО-технологии.

Классы

В поиске, начатом в лекции 3, АТД будут служить непосредственной основой модулей. Точнее, ОО-система будет строиться (на уровне анализа, проектирования и реализации) как совокупность взаимодействующих, частично или полностью реализованных АТД. Основное понятие здесь - класс:

Определение: класс

Класс - это абстрактный тип данных, снабженный некоторой (возможно частичной) реализацией

Таким образом, чтобы получить класс, мы должны построить АТД и решить, как его реализовывать. АТД - это математическое понятие, а реализация - это его версия, ориентированная на компьютер. Приведенное определение, однако, утверждает, что реализация может быть частичной. Введенные ниже термины позволяют отделить этот случай от полностью реализованного класса:

Определение: отложенный и эффективный классы

Полностью реализованный класс называется эффективным (effective). Класс, который реализован лишь частично или совсем не реализован, называется отложенным (deferred). Всякий класс является либо отложенным, либо эффективным.

Чтобы получить эффективный класс, требуется предусмотреть все детали реализации. Для отложенного класса можно выбрать определенный уровень реализации, но при этом оставить некоторые аспекты реализации незавершенными. В самом крайнем случае при частичной реализации можно вообще отказаться от принятия каких-либо решений о ее уточнении. В этом случае получившийся класс будет полностью отложенным и будет эквивалентен АТД.

Как создавать эффективный класс

Рассмотрим вначале эффективные классы. Что нужно сделать для реализации АТД? Результирующий эффективный класс будет формироваться из элементов трех видов:

  • (E1) Спецификации АТД (множество функций с соответствующими аксиомами и предусловиями, описывающими их свойства).
  • (E2) Выбора представления.
  • (E3) Отображения из множества функций (E1) в представление (E2) в виде множества механизмов (или компонентов (features)), каждый из которых реализует одну из функций в терминах представления и при этом удовлетворяет аксиомам и предусловиям. Многие из этих компонентов будут методами - обычными процедурами, но некоторые могут появляться в качестве полей данных или "атрибутов" (это будет показано в следующих лекциях).

Например, для АТД STACK можно выбрать в качестве представления (шаг E2) решение, названное выше МАССИВ_ВВЕРХ, при котором каждый стек реализуется парой

<representation, count>,

где representation - это массив, а count - это целое число. При реализации функций (E3) у нас будут процедуры для функций put, remove, item, empty и new, выполняющие соответствующие действия. Например, функцию put можно реализовать программой вида

put (x: G) 
is   -- Втолкнуть x в стек.
   -- (без проверки стека на возможное переполнение.)
   do
      count := count + 1
      representation [count]:= x
   end

Объединение элементов, полученных в пунктах (E1), (E2) и (E3), приведет к классу - модульной структуре объектной технологии.

Роль отложенных классов

В определении эффективного класса должна присутствовать полная информация о реализации (пункты E2 и E3). Если она хоть в чем-то неполна, то класс является отложенным.

Чем более "отложенным" является класс, тем он ближе к АТД, одетому в некоторую синтаксическую одежду, которая скорее поможет завоевать признание разработчиков ПО, чем математиков. Отложенные классы особенно полезны при анализе и проектировании:

  • При ОО-проектировании многие аспекты реализации будут опущены, проектирование должно сосредотачиваться на архитектурных свойствах высокого уровня - на том, какую функциональность обеспечивает каждый модуль системы, а не на том, как он это делает.
  • При постепенном продвижении к полной реализации будут добавляться все новые и новые ее свойства до тех пор, пока не будет получен эффективный класс.

Но на этом роль отложенных классов не завершается, даже в полностью реализованной системе можно часто обнаружить много таких классов. Кое-что следует из только что перечисленных применений: когда из отложенных классов получаются эффективные, то появляется желание сохранить их в качестве предков (в смысле наследования) эффективных классов как живую память о процессе анализа и проектирования.

Очень часто при разработке ПО с помощью не ОО-подходов система в окончательном виде не содержит никаких записей о тех значительных усилиях, которые были затрачены на ее получение. Для тех, кто вынужден будет обслуживать такую систему - расширять, переносить, отлаживать - понять ее без этих записей будет так же трудно, как трудно геологу понять видимый ландшафт, не имея доступа к осадочным слоям. Один из лучших способов обеспечить необходимую для сопровождения системы информацию - это сохранить отложенные классы в ее окончательной форме.

У отложенных классов имеется также применение, полностью связанное с реализацией. Они служат для классификации групп связанных типов объектов, предоставляют некоторые наиболее важные многократно используемые модули высокого уровня, фиксируют общие свойства поведения многих вариантов и играют ключевую роль (вместе с полиморфизмом и динамическим связыванием) в обеспечении децентрализации и расширяемости программной архитектуры.

Несколько следующих лекций, в которых вводятся основные ОО-методы, будут сосредоточены на эффективных классах. Но при этом следует помнить о понятии отложенного класса, чья важность будет расти по мере овладения всей мощью ОО-метода.

Абстрактные типы данных и скрытие информации

Особенно интересным следствием ОО-политики, в которой модули основаны на реализациях АТД (классах), является то, что она дает ясный ответ на вопрос, который остался нерешенным при обсуждении скрытия информации: как нам следует разделять общедоступные и скрытые свойства модуля - видимую и невидимую части айсберга?

Рис. 6.6.  АТД вид модуля при скрытии информации

Если модуль является классом, полученным из АТД, то ответ ясен. Из трех частей, вовлеченных в эту эволюцию, E1- спецификация АТД, является открытой, а E2 и E3 - выбор представления и реализация функций АТД в терминах этого представления - должны быть закрытыми (секретными). Когда мы начнем строить классы, то столкнемся еще с четвертой частью, также секретной, - вспомогательными свойствами, необходимыми только для внутренних нужд этих программ.

Таким образом, использование абстрактных типов данных в качестве источника модулей дает нам практичное, однозначное указание для применения скрытия информации в наших проектах.

Переход к более императивной точке зрения

Переход от АТД к классам включает существенное изменение стилистики: введение изменений и императивных аргументов.

Как вы помните, спецификация абстрактных типов данных не описывает явно изменений, т. е., используя термин из теоретической информатики, является аппликативной. Все свойства АТД моделируются как математические функции, это относится к конструкторам, запросам и командам. Например, операция вталкивания для стеков моделируется функцией-командой:

put: STACK [G] × G → STACK [G],

задающей операцию, которая возвращает новый стек, а не изменяет существующий.

Классы отказываются от чисто аппликативной точки зрения на функции и переопределяют команды как операции, которые могут изменять объекты. Например, операция put будет определена как процедура, которая получает некоторый элемент типа G (формальный параметр) и модифицирует стек, вталкивая новый элемент на его вершину, не создавая нового стека.

Такое изменение стиля отражает императивные настроения, преобладающие при разработке ПО. (В качестве синонима слова "императивный" иногда используется термин "операционный"). При этом потребуется изменять аксиомы АТД. Аксиомы стеков A1 и A4, которые имели вид

  • (A1) item (put (s, x)) = x
  • (A4) not empty (put (s, x))

превратятся в императивной форме в предложение, называемое постусловием программы (routine postcondition), вводимое ключевым словом ensure (обеспечивает):

put (x: G) is
      -- Втолкнуть x на вершину стека
   require
      ... Предусловие (если таковое имеется) ...
   do
      ... Соответствующая реализация (если известна) ...
   ensure
      item = x
      not empty
   end

Здесь постусловие объясняет, что результатом вызова программы put значение item будет равно x (втолкнутому элементу), а значение empty будет ложно.

Другие аксиомы спецификации АТД приводят к утверждению, известному как инвариант класса . Постусловия, инварианты класса и другие перевоплощения предусловий и аксиом АТД мы рассмотрим во время обсуждения утверждений и проектирования по контракту (п. 11.10 "Связь с АТД").

Назад к тому, с чего начали?

Если вы внимательно следили, начиная с лекции о модульности, за главной линией рассуждений, которая привела нас к абстрактным типам данных, а затем и к классам, то сейчас, быть может, вы будете удивлены. Поставив целью получить по возможности наилучшую модульную структуру, мы пришли к тому, что объекты, точнее - типы объектов, будут лучшей основой для модулей, чем их традиционные соперники - функции. Это привело к следующему вопросу: как описать эти типы объектов. Но, когда мы на него ответили: описывать нужно в виде абстрактных типов данных (и их заменителей на практике - классов), то оказалось, что нужно основывать описание данных на ... применяемых к ним функциях! Не получился ли у нас порочный круг?

Нет. Типы объектов, представлямые АТД и классами, остаются неизменной основой модуляризации.

Неудивительно, что и объектный, и функциональный аспект должен проявиться в окончательной архитектуре системы: никакое описание вопросов ПО не может считаться полным, если в нем опущена одна из этих компонент. Фундаментальное различие ОО-методов и старых подходов состоит в распределении ролей: типы объектов - безусловные победители при выборе критериев для построения модулей. Функциям достается только роль их слуг.

При ОО-декомпозиции никакая функция не существует сама по себе - каждая функция прикреплена к некоторому типу объектов. Это относится и к уровню проектирования, и к уровню разработки: никакое свойство не существует само по себе, каждое из них прикреплено к некоторому классу.

Конструирование объектно-ориентированного ПО

Мы уже давали определение конструирования ОО-ПО: будучи весьма общим, оно представляет метод следующим образом: "основывать архитектуру всякой программной системы на модулях, полученных из типов объектов, с которыми оперирует система". Придерживаясь рамок этого определения, мы можем дополнить его теперь более техническим определением:

Конструирование объектно-ориентированного ПО (определение 2)

Конструирование ОО-ПО - это построение программной системы как структурированной совокупности реализаций (возможно частичных) абстрактных типов данных.

Это определение будет нашим рабочим определением. Все его компоненты являются важными:

  • В основе лежит понятие абстрактного типа данных.
  • Для конструирования программ нам нужны не сами по себе АТД (как математическое понятие), а реализации АТД - программистское понятие.
  • При этом эти реализации не обязаны быть полными, оговорка "возможно частичные" позволяет использовать и отложенные классы, включая, как крайний случай, полностью отложенный класс без какой-либо реализации.
  • Система представляет собой совокупность классов без выделения какого-либо главного или ответственного класса или головной программы.
  • Эта совокупность является структурированной благодаря двум отношениям между классами: "быть клиентом" и наследованию.

За пределами программ

Подчеркнем теперь важность понятия АТД для областей, лежащих вне непосредственной области его предполагаемого применения.

Подход, основанный на АТД, говорит нам, что серьезное интеллектуальное исследование должно отвергать всякую попытку понять суть вещей изнутри как бесполезную, и вместо этого должно сосредотачиваться на понимании используемых свойств этих вещей. Не объясняйте мне, что вы собой представляете, скажите мне, что у вас есть - что я могу от вас получить. Если потребуется дать имя этой эпистемологической дисциплине, мы скажем, что это принцип разумного эгоизма .

Если я испытываю жажду, то апельсин - это то, из чего я могу выдавить сок, если художник, то цвет - это то, что может воодушевить мою палитру, если фермер, то это - продукт, который я могу продать на рынке, если архитектор, то это - чертежи, показывающие мне, как спроектировать новый оперный театр, но если я - ни один из них, и никак не использую апельсин, то я не должен говорить о нем, поскольку понятие "апельсин" для меня даже не существует.

Принцип эгоизма, утверждающий, что вы - это то, что у вас есть, является крайним выражением идеи, играющей центральную роль в развитии науки: идеи абстракции или важности разделения понятий. Две цитаты, приведенные в начале этой лекции, каждая из которых по-своему замечательна, выражают важность этой идеи. Их авторы Дидро и Стендаль были писателями, а не учеными, хотя очевидно, что у обоих имелось хорошее понимание сути научного метода. (Дидро был пылким вдохновителем Большой энциклопедии, а Стендаль готовился к поступлению в Политехническую школу, хотя затем решил, что может найти более подходящие занятия). Просто поразительно, насколько обе цитаты применимы к использованию абстракции при конструировании программ.

Но в принципе эгоизма есть и кое-что помимо абстракции - это, кажущаяся с первого взгляда шокирующей, идея о том, что ни о каком свойстве не стоит говорить, если от него нет никакой прямой пользы говорящему.

Это приводит к мысли рассмотреть общее интеллектуальное значение нашей области.

На протяжении ряда лет во многих статьях и выступлениях предлагалось проверить, как разработчики ПО могут извлечь выгоду от изучения философии, общей теории систем, "когнитивных наук", психологии. Но для практикующих разработчиков программ результаты оказываются разочаровывающими. Если исключить из рассмотрения универсально применимые законы рационального (разумного) исследования, известные просвещенным умам уже в течение многих веков (по крайней мере, с Декарта), которые, разумеется, применимы к информатике, как и ко всему прочему, то иногда кажется, что специалисты в вышеуказанных дисциплинах могут получить больше, обучаясь у специалистов по программному обеспечению, чем наоборот.

Конструкторы программ брались - с различной степенью успеха - за решение ряда самых сложных из когда-либо рассматриваемых интеллектуальных задач. Немногие из инженерных проектов могут сравниться по сложности с программными проектами, содержащими много миллионов строк, которые регулярно производятся в наши дни. Приложив немало амбициозных усилий, программистское сообщество достигло точного понимания таких предметов и понятий, как размер, сложность, структура, абстракция, таксономия, параллельность, рекурсивный вывод, различие между описанием и предписанием, язык, изменение и инварианты. Все это произошло так недавно и настолько интуитивно, что сама эта профессиональная среда еще не осознала эпистемологических последствий собственной деятельности.

В конце концов, появится кто-нибудь, кто объяснит, какие уроки весь интеллектуальный мир может извлечь из опыта конструирования ПО. Нет сомнений в том, что абстрактные типы данных будут играть в них выдающуюся роль.

Дополнительные темы

Представленное выше описание абстрактных типов данных вполне достаточно для использования АТД в рамках данной книги. (Чтобы дополнить его, выполните упражнения, которые помогут уточнить ваше понимание этого понятия).

Если же, как я надеюсь, АТД уже завоевали вас своей элегантностью, простотой и мощью, то не исключено, что вам захочется узнать побольше об их свойствах, даже о таких, которые не будут использоваться в обсуждении ОО-методов. Далее на нескольких страницах рассмотрены следующие дополнительные темы, которые можно опустить при первом чтении:

  • неявность и ее связь с процессом конструирования ПО;
  • различие между спецификацией и проектированием;
  • различие между классами и записями;
  • возможные альтернативы использованию частичных функций;
  • решение о полноте или неполноте спецификации.

Библиографические ссылки к этой лекции указывают на более специальную литературу по АТД.

Еще раз о неявности

Неявная природа абстрактных типов данных и классов, рассмотренная выше, отражает одну из важных проблем конструирования программ.

Вполне законен вопрос о различии между упрощенной спецификацией АТД, использующей объявление функций

x: POINT → REAL
y: POINT → REAL

и объявлением типа в таком традиционном языке программирования, как Pascal:

type
POINT =
   record
      x, y: real
   end

На первый взгляд эти два объявления представляются эквивалентными: оба утверждают, что с типом POINT связаны два значения x и y типа REAL. Но между ними имеется существенная, хотя и тонкая разница:

  • Запись в языке Pascal является законченной и явной: она показывает, что объект POINT включает два данных поля и ничего кроме них.
  • Объявление функций АТД не несут такого смысла. Они показывают, что объект типа POINT можно запрашивать о значениях его x и y, но не исключают других запросов, например, о массе и скорости точки в кинематическом приложении.

С упрощенной математической точки зрения можно считать, что приведенное выше объявление в Паскале является определением математического множества POINT как декартова произведения:

POINT  REAL × REAL,

где знак означает "определяется как" ("равно по определению"), и оно полностью задает POINT. В отличие от этого спецификация АТД не определяет явно POINT посредством такой математической модели как декартово произведение, она просто неявно характеризует POINT, перечисляя два запроса, применимых к объектам этого типа.

Если имеется спецификации некоторого понятия, то может появиться желание переместить ее из неявного мира в явный, идентифицируя понятие с декартовым произведением применимых к нему простых запросов, например захочется идентифицировать точки с парами <x, y>. Такой процесс идентификации можно рассматривать как определение перехода от анализа и спецификации к проектированию и реализации.

Соотношение спецификации и проектирования

Предыдущее наблюдение помогает уточнить один из центральных вопросов, возникающих при изучении ПО: различие между начальным этапом разработки ПО - его спецификацией, называемым также анализом, - и более поздними стадиями такими, как проектирование и реализация.

В литературе по разработке программ обычно объясняется, что это различие между "определением задачи" и "построением ее решения". Будучи в принципе правильным, такое объяснение не всегда применимо на практике и иногда бывает трудно понять, где заканчивается спецификация и начинается проектирование. Даже в среде исследователей люди запросто критикуют друг друга в связи с этой темой: "вы рекламируете язык x как язык спецификаций, но на самом деле он предназначен для проектирования". Наивысшим оскорблением считается обвинение некоторой системы обозначений в обслуживании реализации (подробнее об этом в одной из следующих лекций).

Приведенное выше определение дает более точный критерий: пересечь Рубикон между спецификацией и проектированием - это перейти от неявного к явному, другими словами:

Определение: переход от анализа (спецификации) к проектированию

Перейти от спецификации к проектированию - это идентифицировать каждую абстракцию с декартовым произведением ее простых запросов.

Последующий переход - от проектирования к реализации - это просто движение от одного явного вида к другому: форма при проектировании более абстрактна и ближе к математическим понятиям, а при реализации более конкретна и ближе к компьютеру, но обе они являются явными. Этот переход менее драматичен, чем предыдущий - действительно, при дальнейшем чтении станет понятно, что объектная технология почти стирает различие между проектированием и реализацией. При хорошей системе ОО-нотации нашими компьютерами непосредственно выполняется (с помощью компиляторов) то, что в не ОО-мире часто рассматривалось бы как проекты.

Соотношение классов и записей

Другим замечательным свойством объектной технологии является то, что при ней можно сохранять неявные описания гораздо дольше, чем при других подходах. В последующих лекциях будет введена система обозначений, позволяющая определять класс в виде:

class POINT feature
   x, y: REAL
end

Это выглядит подозрительно похожим на приведенное выше определение записи в Паскале. Но, несмотря на внешнее сходство, определение класса другое - оно неявное! Эта неявность проявляется при наследовании: автор класса или (что еще более интересно) кто-либо другой может в любой момент определить новый класс, например:

class MOVING_POINT inherit
   POINT
feature
   mass: REAL
   velocity: VECTOR [REAL]
end

который расширяет исходный класс совершенно незапланированным способом. Тогда переменная (или сущность, если использовать вводимую далее терминологию) типа POINT, объявленная как

p1: POINT

может быть связана с объектом не только типа POINT, но и с каждым потомком этого типа, например с объектом типа MOVING_POINT. Это может получиться, в частности, с помощью "полиморфных присваиваний" вида:

p1 := mp1
где mp1 имеет тип MOVING_POINT.

Эти возможности иллюстрируют неявность и открытость определения класса: соответствующие экземпляры представляют не только точки в узком смысле, т. е. непосредственно экземпляры класса POINT, но и экземпляры всякого класса, описывающего понятия, выводимые из исходного класса.

Способность определять элементы программ (классы), которые немедленно используются (посредством наследования), оставаясь неявными, является одним из главных нововведений объектной технологии, непосредственно отвечающему принципу Открыт-Закрыт. В последующих лекциях будут раскрыты все вытекающие из нее следствия.

Альтернативы частичным функциям

Один из технических приемов, используемый в этой лекции, мог вызвать удивление, - применение частичных функций. Он связан с неустранимой проблемой применения в некоторой спецификации не всюду определенных операций. Но являются ли частичные функции лучшим решением этой проблемы?

Конечно, это не единственно возможное решение. Другим способом, который приходит на ум и действительно используется в некоторых работах по АТД, является превращение частичной функции во всюду определенную за счет введения специального значения "ошибка" для случаев применения функции к неподходящим аргументам.

Каждый тип T дополняется значением "ошибка". Обозначим его через wT . Тогда для всякой функции f сигнатура

f: ... Типы входов ... → T

определяет, что всякое применение f к объекту, для которого соответствующее вычисление не может быть выполнено, выдаст значение wT.

Хотя этот метод и используется, он приводит к математическим и практическим неудобствам. Проблема в том, что такие специальные значения являются весьма эксцентричными существами, которые могут чрезвычайно осложнить жизнь невинных математических существ.

Предположим, например, что рассматриваются стеки целых чисел - экземпляры типа STACK [INTEGER], где INTEGER - это АТД, экземпляры которого - целые числа. Хотя для нашего примера не требуется полностью выписывать спецификацию INTEGER, этот АТД должен моделировать основные операции (сложение, вычитание, "меньше чем" и т. п.), определенные на математическом множестве целых чисел. Аксиомы этого АТД должны выражать обычные свойства целых чисел. Вот одно из таких типичных свойств: для всякого целого n:

[Z1]
n + 1 ≠ n

Пусть теперь n будет результатом запроса верхнего элемента пустого стека, т. е. значением выражения item (new), где new - это пустой стек целых чисел. При этом запросе n должно получить специальное значение wINTEGER . Что же тогда должно быть значением выражения n+1? Если у нас в распоряжении имеются в качестве значений только обычные целые числа и wINTEGER , то в качестве ответа мы вынуждены выбрать wINTEGER:

wINTEGER + 1 = wINTEGER.

Это единственный допустимый выбор. Если присвоить wINTEGER+1 любое другое значение, "нормальное" число q, то это означает, что после попытки доступа к вершине пустого стека и получения в качестве результата ошибочного значения мы можем волшебным образом устранить всякую память об этой ошибке, просто прибавив к результату единицу!

Но, при выборе wINTEGER в качестве значения n + 1 при n равном wINTEGER, нарушается указанное выше свойство Z1. В общем случае, выражение wINTEGER+p будет равно wINTEGER для любого p. Это означает, что для измененного типа данных (INTEGER, дополненные ошибочным элементом) требуется новая система аксиом, объясняющая, что всякая операция над целыми числами возвращает значение wINTEGER, если хоть один из ее аргументов равен wINTEGER. Аналогичные изменения потребуются для каждого типа.

Получившееся усложнение не кажется обоснованным. Мы не можем изменять спецификацию целых чисел только для того, чтобы промоделировать каждую отдельную структуру данных (в нашем случае - стеки). При использовании частичных функций ситуация более простая. Конечно, для всякого выражения, содержащего частичные функции, приходится проверять, что их аргументы удовлетворяют соответствующим предусловиям. После завершения такой проверки, можно беспрепятственно применять аксиомы. При этом не требуется изменять существующие системы аксиом.

Полна ли моя спецификация?

Другой вопрос, который может вас тревожить: есть ли какой-нибудь способ убедиться в том, что спецификация описывает все нужные свойства объектов, для которых она предназначена? Студенты, которым требуется написать их первые спецификации (например, проделать упражнения в конце этой лекции), часто приходят с аналогичным вопросом: "Как узнать, что я уже специфицировал достаточно свойств и могу остановиться?"

В более общей форме вопрос звучит так: существует ли метод, позволяющий определять полноту спецификации АТД?

Если непосредственно задать вопрос в такой форме, то ответ будет простой - нет. Понятно, что для формальной спецификации сказать, что она полна - это утверждать, что она покрывает все необходимые свойства, но это имеет смысл только по отношению к некоторому эталонному документу, в котором все эти свойства перечислены. Тогда мы сталкиваемся с двумя равно неутешительными ситуациями:

  • Если эталонный документ является неформальным (например, документом с требованиями на естественном языке или просто текстом упражнения), то отсутствие формальности предотвращает всякую попытку систематической проверки соответствия спецификации всем требованиям, описанным в этом документе.
  • Если же эталонный документ является формальным, и мы можем, используя его, проверить полноту нашей спецификации, то это просто отодвигает проблему дальше: как можно убедиться в полноте самого эталонного документа?

Таким образом, в этой тривиальной форме вопрос о полноте неинтересен. Но имеется и более полезное понятие полноты, соответствующее значению этого слова в математической логике. Для математика некоторая теория является полной, если ее аксиомы и правила вывода являются достаточно мощными, чтобы доказать истинность или ложность любой формулы, выразимой в языке данной теории. Хотя такое понятие полноты является более ограниченным, но оно интеллектуально вполне удовлетворительно, поскольку показывает, что если теория позволяет нам выражать некоторое свойство, то она также дает возможность определить имеет ли это свойство место.

Как можно перенести эту идею на спецификации АТД? Здесь "язык теории" - это множество правильно построенных выражений, т.е. тех выражений, которые можно построить, используя функции АТД, применяемые к аргументам соответствующих типов. Например, используя спецификацию АТД STACK и считая, что x является правильно построенным выражением типа G, можно указать следующие правильно построенные выражения:

new

put (new, x)

item (new) - если это кажется странным, то см. комментарии ниже.

empty (put (new, x)

stackexp - ранее определенное сложное выражение.

Однако выражения put (x) и put (x, new) не являются правильно построенными, так как они не соответствуют правилу: put всегда должно иметь два аргумента - первый типа STACK [G] и второй типа G.

Третий пример в рамке item (new) не задает никакого осмысленного вычисления, поскольку аргумент new не удовлетворяет предусловию для item. Хотя это выражение и правильно построено, оно не является корректным. Вот точное определение этого понятия.

Определение: корректное выражение АТД

Пусть f(x1 , ... , xn) - правильно построенное выражение, содержащее одну или более функций некоторого АТД. Это выражение является корректным тогда и только тогда, когда все его аргументы xi являются (по рекурсии) корректными и их значения удовлетворяют предусловию f, если оно имеется.

Не следует путать "корректное" и "правильно построенное". "Правильно построенное" - это структурное свойство, указывающее на то, что функции, входящие в выражение, имеют правильное число аргументов соответствующих типов, а корректность, которой могут обладать лишь правильно построенные выражения, означает, что данное выражение задает осмысленное вычисление. Как мы видели, выражение put (x) не является правильно построенным (и поэтому бессмысленно спрашивать, корректно ли оно), а выражение item (new) правильно построено, но некорректно.

Правильно построенное, но некорректное выражение похоже на программу, которая компилируется (поскольку построена в соответствии с требованиями синтаксиса языка программирования и удовлетворяет ограничениям, накладываемым в нем на типы), но аварийно завершается во время выполнения из-за выполнения некоторой недопустимой операции, например, деления на 0 или выталкивания элемента из пустого стека.

Особый интерес с точки зрения полноты представляют выражения-запросы, у которых самая внешняя функция является запросом. Вот примеры таких выражений:

empty (put (put (new, x1), x2))
item (put (put (new, x1), x2))
stackexp 

Выражение-запрос задает значение, которое (если оно определено) принадлежит не определяемому АТД, а некоторому другому ранее определенному типу. Так, первое приведенное выше выражение имеет значение типа BOOLEAN, а второе и третье - тип G формального параметра для элементов стека, например если мы рассматриваем АТД STACK [INTEGER], то это будет тип INTEGER.

Выражения-запросы представляют внешние наблюдения, которые можно сделать о результатах некоторого вычисления, использующего экземпляры нового АТД. Если спецификация этого АТД хорошая, то она должна позволить нам установить определены ли эти результаты, и если да, то каковы они. Представляется, что спецификация стека обладает этим свойством, по крайней мере, для трех представленных в примере выражений, поскольку она позволяет установить, что все эти выражения определены, и с помощью аксиом можно получить их значения:

empty (put (put (new, x1), x2)) = False
item (put (put (new, x1), x2)) = x2
stackexp = x4

Эти наблюдения, перенесенные на произвольные спецификации АТД, приводят к прагматическому понятию полноты, известному как достаточная полнота, она означает, что спецификация содержит достаточно сильные аксиомы, которые позволяют находить для любого выражения-запроса его результат в виде некоторого простого значения.

Приведем точное определение достаточной полноты. (Не расположенные к математике читатели могут пропустить остаток этого раздела).

Определение: достаточная полнота

Спецификация АТД T является достаточно полной тогда и только тогда, когда аксиомы ее теории позволяют для каждого выражения expr решить следующие задачи:

  • (S1) Определить, является ли expr корректным.
  • (S2) Если expr - выражение-запрос и в пункте S1 установлена его корректность, то представить значение expr в виде, не включающем никаких значений типа T.

В S2 выражение expr имеет вид f(x1 , ..., xn), где f - функция вида запрос такая, как empty и item для стеков. S1 говорит о том, что у expr есть значение, но этого недостаточно, нам хотелось бы знать, каково это значение, представленное в терминах значений других типов (в примере со стеком это значения типов BOOLEAN и G). Если аксиомы настолько сильны, что всегда позволяют ответить на этот вопрос, то спецификация является достаточно полной.

Достаточная полнота свидетельствует о том, что никакое важное свойство не осталось вне нашей спецификации. Поэтому ее можно считать ответом на поставленный выше вопрос: как понять, что можно прекратить поиски новых свойств при построении спецификации? На практике хорошо бы проводить такую проверку, по крайней мере неформально, для любой спецификации АТД, которую вы пишите - начните с решений упражнений, приведенных в этой лекции. Часто, можно получить формальное доказательство достаточной полноты; приведенное ниже доказательство для спецификации STACK является образцом, которому во многих случаях можно следовать.

Пункт S2 оптимистически говорит об одном значении expr, а что, если аксиомы приводят к двум или более значениям? Это сделало бы спецификацию бесполезной. Чтобы устранить такую ситуацию нам нужно еще одно свойство, называемое в математической логике непротиворечивостью:

Определение: непротиворечивость АТД

Спецификация АТД является непротиворечивой тогда и только тогда, когда для всякого правильно построенного выражения expr ее аксиомы позволяют вывести не более одного значения.

Эти два свойства являются взаимно дополнительными. Нам хотелось бы для каждого выражения-запроса выводить ровно одно значение: хотя бы одно (достаточная полнота), но не более одного (непротиворечивость).

Доказательство достаточной полноты

(Этот раздел и остаток этой лекции содержат дополнительный материал и их результаты не нужны для остальной части книги).

Достаточная полнота спецификаций АТД является, в общем случае, алгоритмически неразрешимой проблемой. Иными словами, не существует общего метода доказательства, который мог бы по заданной спецификации АТД выяснить за конечное время ее достаточную полноту. Непротиворечивость также в общем случае неразрешима.

Несмотря на это, часто удается доказать достаточную полноту и непротиворечивость конкретной спецификации АТД. Чтобы удовлетворить любопытство читателей-любителей математики, в заключение этой лекции мы приведем доказательство того, что спецификация STACK на самом деле является достаточно полной. Доказательство ее непротиворечивости будет оставлено в качестве упражнения.

Для доказательства достаточной полноты спецификации стека нужно придумать эффективное правило для решения указанных выше задач S1 и S2, другими словами, такое правило, которое позволит нам для любого стекового выражения e:

  • (S1) Определить, является ли e корректным.
  • (S2) Если в пункте S1 установлена корректность e и его внешними функциями являются item или empty (т.е. функции-запросы), то представить значение e с помощью значений типов BOOLEAN и G без ссылок на значения типа STACK [G] или на функции из спецификации STACK.

Для начала мы рассмотрим только правильно построенные выражения, не включающие ни одну из двух функций-запросов item и empty, т. е. выражения, построенные только из функций new, put и remove. Таким образом, на этом этапе нас будет интересовать лишь задача S1 (установить определено ли выражение). Функции-запросы и S2 будут рассмотрены далее.

Правило для решения задачи S1 задается следующим свойством:

Правило корректного веса

Правильно построенное стековое выражение e, не содержащее ни item, ни empty, является корректным тогда и только тогда, когда его вес неотрицателен и каждое его подвыражение является (по индукции) корректным.

Здесь "вес" выражения представляет число элементов в соответствующем стеке, это значение также совпадает с разностью между числом вложенных вхождений функций put и remove. Приведем точное определение этого понятия:

Определение: вес

Вес правильно построенного стекового выражения, не содержащего ни item, ни empty, определяется по индукции следующим образом:

  • (W1) Вес выражения new равен 0.
  • (W2) Вес выражения put (s, x) равен ws + 1, где ws - это вес s.
  • (W3) Вес выражения remove (s) равен ws- 1, где ws - это вес s.

Содержательно, правило корректного веса утверждает, что стековое выражение корректно тогда и только тогда, когда в нем самом и в каждом из его подвыражений имеется не меньше операций put (вставляющих элементы в стек), чем операций remove (выталкивающих элементы с вершины стека). Если рассмотреть такое выражение как представление некоторого вычисления над стеком, то это означает, что мы никогда не будем пытаться вытолкнуть больше элементов, чем втолкнули. Напомним, что на этом этапе мы сосредоточились на функциях put и remove, оставив в стороне запросы item и empty.

Интуитивно сформулированное правило выглядит верным, но нам следует все же доказать, что оно имеет место. Удобно ввести еще одно вспомогательное правило и одновременно доказывать справедливость обоих этих правил:

Правило нулевого веса

Пусть e - это правильно построенное и корректное стековое выражение, не содержащее item или empty. Тогда empty (e) истинно тогда и только тогда, когда вес e равен 0.

Доказательство использует индукцию по уровню вложенности (максимальному числу вложенных пар скобок) выражения. Для удобства ссылок напомним аксиомы, относящиеся к функции empty:

Аксиомы стека

Для всех x: G, s: STACK [G]

  • (A3) empty (new)
  • (A4) not empty (put (s, x))

При уровне вложенности 0 (без скобок) выражение e должно совпадать с new, поэтому его вес равен 0 и оно корректно, так как у new нет никаких предусловий. Аксиома A3 утверждает, что empty (new) истинно. Это обеспечивает базис индукции как для правила корректного веса, так и для правила нулевого веса.

Индукционный шаг: предположим, что оба правила выполняются для всех выражений с уровнем вложенности не более n. Нужно доказать, что тогда они выполняются и для любого выражения e с уровнем вложенности n+1. Поскольку наши выражения сейчас не содержат функций-запросов, то e должно иметь один из следующих двух видов:

E1 · e = put (s, x)
E2 · e = remove (s)

где x имеет тип G, а уровень вложенности у s равен n. Пусть ws - это вес s.

В случае E1, поскольку put - всюду определенная функция, e корректно тогда и только тогда, когда s корректно, т. е. (по предположению индукции) тогда и только тогда, когда s и все его подвыражения имеют неотрицательные веса. Но это эквивалентно тому, что e и все его подвыражения имеют неотрицательные веса, что и доказывает правило корректного веса в этом случае. Кроме того, e имеет положительный вес ws+1, и (по аксиоме A4) является непустым, что доказывает правило нулевого веса.

В случае E2 выражение e корректно тогда и только тогда, когда выполняются два следующих условия:

EB1 _ s и все его подвыражения являются корректными.
EB2 _ not empty (s) (это предусловие для функции remove).

По предположению индукции условие EB2 означает, что вес s ws положителен или, что эквивалентно, вес e, равный ws - 1, является неотрицательным. Следовательно, e удовлетворяет Правилу корректного веса. Чтобы доказать, что оно также удовлетворяет правилу нулевого веса, нужно показать, что e пусто тогда и только тогда, когда его вес равен 0. Так как вес s положителен, то s должно содержать по крайней мере одно вхождение put, которое также входит и в e. Рассмотрим самое внешнее вхождение put в e, это вхождение находится непосредственно внутри remove (так как remove находится на самом внешнем уровне у e). Это означает, что у e имеется подвыражение (быть может, совпадающее с самим e) вида

remove (put (stack_expression, g_expression)),

которое по аксиоме A2 можно сократить просто до stack_expression. После выполнения этой замены вес e уменьшится на 2, и получившееся выражение, имеющее то же значение, что и e, удовлетворяет по предположению индукции правилу нулевого веса. Это доказывает утверждение индукции в случае E2.

Это доказательство попутно показывает, что во всяком правильно построенном выражении, не содержащем функций-запросов item и empty, можно устранить все вхождения remove, т.е. получить, применяя всюду, где это возможно, аксиому A2, некоторую каноническую форму, в которую будут входить только put и new. Например, выражение:

put (remove (remove (put (put (remove (put (put (new, x1), x2)), x3), x4))), x5)

имеет то же значение, что и каноническая форма:

put (put (new, x1), x5).

Давайте дадим этому механизму имя и приведем его определение:

Правило канонического сокращения

Всякое правильно построенное и корректное стековое выражение, не содержащее функций-запросов item и empty, имеет эквивалентную каноническую форму, которая не содержит функции remove (т.е. состоит только из функций put и new>). Эта каноническая форма получается путем применения аксиомы стека A2 всегда, пока это возможно.

Таким образом, мы завершили доказательство достаточной полноты, но только для выражений, не содержащих функции-запросы, и, следовательно, только свойства S1 (проверка корректности выражения). Для завершения доказательства нужно рассмотреть выражения, включающие функции-запросы, и обсудить задачу S2 (нахождение значений для выражений-запросов). Это означает, что нам нужно некоторое правило для определения корректности и значения всякого правильно построенного выражения вида f(s), где s - это правильно построенное выражение, а f - это либо item, либо empty.

Это правило и доказательство его корректности также используют индукцию по уровню вложенности. Пусть n - это уровень вложенности s. Если n=0, то s может быть только new, поскольку остальные функции требуют аргументов и, следовательно, содержат хоть одну пару скобок. Тогда для обеих функций-запросов ситуация ясна:

  • empty (new) корректно и имеет значение истина (true) (по аксиоме A3);
  • item (new) некорректно, так как предусловие item требует выполнения not empty (s) .

Индукционный шаг: предположим, что s имеет уровень вложенности n не менее 1. Если у какого-либо подвыражения u выражения s внешняя функция есть item или empty, то уровень вложенности u не превосходит n-1, что по предположению индукции позволяет определить корректность u и, если u корректно, получить его значение, применяя аксиомы. Выполнив замены всех таких подвыражений, получим для s эквивалентную форму, в которую входят только функции put, remove и new.

Далее используем идею введенной выше канонической формы, чтобы избавиться от всех вхождений remove, так что результирующая форма для s будет включать только функции put и new. Случай, когда s это просто new уже был рассмотрен, остался случай, когда s имеет вид put(s', x) . В этом случае для двух рассматриваемых выражений имеем:

  • empty (s) корректно и по аксиоме A3 значение этого выражения есть ложь (false);
  • item (s) корректно, так как предусловие not empty (s) для item выполнено; из аксиомы A1 следует, что значение этого выражения равно x.

Это завершает доказательство достаточной полноты, так как мы показали справедливость множества правил - правила корректного веса и правила канонического сокращения, позволяющего нам выяснять корректность заданного стекового выражения, а для корректного выражения-запроса - определять его значение в терминах значений типов BOOLEAN и G.

Ключевые концепции

  • Теория абстрактных типов данных (АТД) примиряет необходимость в точности и полноте спецификаций с желанием избежать лишних деталей в спецификации.
  • Спецификация абстрактного типа данных является формальным математическим описанием, а не текстом программы. Она аппликативна , т.е. не включает в явном виде изменений.
  • АТД может быть родовым, и он задается функциями, аксиомами и предусловиями. Аксиомы и предусловия выражают семантику данного типа и важны для полного и однозначного его описания.
  • Частичные функции образуют удобную математическую модель для описания не всюду определенных операций. У каждой частичной функции имеется предусловие, задающее условие, при котором она будет выдавать результат для заданного конкретного аргумента.
  • ОО-система - это совокупность классов. Каждый класс основан на некотором абстрактном типе данных и задает частичную или полную реализацию этого АТД.
  • Класс является эффективным, если он полностью реализован, в противном случае он называется отложенным.
  • Классы должны разрабатываться в наиболее общем виде, допускающем повторное использование; процесс их объединения в систему часто идет снизу-вверх.
  • Абстрактные типы данных являются скорее неявными, чем явными описаниями. Эта неявность, которая также означает открытость, переносится на весь ОО-метод.
  • Не существует формального определения интуитивно ясного понятия "полноты" спецификации абстрактного типа данных. Строго определяемое понятие достаточной полноты как правило обеспечивает удовлетворительный ответ. Хотя не существует метода, устанавливающего достаточную полноту произвольной спецификации, часто удается ее доказать для конкретных спецификаций; приведенное в этой лекции доказательство достаточной полноты для спецификации стеков может служить образцом и для других случаев.

Библиографические замечания

Несколько работ, опубликованных в начале 1970-х, сделали возможным появление абстрактных типов данных. Среди них наиболее известны статья Хоара о "доказательстве корректности представлений данных" [Hoare 1972a], в которой было введено понятие абстракции функций, и работа Парнаса по скрытию информации, отмеченная в библиографических заметках к лекции 3.

Конечно, абстрактные типы данных не ограничиваются вопросами скрытия информации, хотя многие их элементарные изложения дальше этого не идут. Собственно АТД были введены Лисков и Зиллеса [Liskov 1974]; более алгебраические представления были приведены в [M1976] и [Guttag 1977]. Так называемая группа ADJ (Гоген, Тэтчер, Вагнер) исследовали алгебраические основания абстрактных типов данных, используя теорию категорий. В частности, см. их важную статью [Goguen 1978], опубликованную в коллективной монографии.

На основе абстрактных типов данных основано несколько языков спецификаций. Двумя результатами группы ADJ являются CLEAR [Burstall 1977] [Burstall 1981] и OBJ-2 [Futatsugi 1985]. См. также Larch, предложенный Гуттагом, Хорнингом и Вингом [Guttag 1985].

Идеи АТД повлияли на такие языки формальных спецификаций как Z в ряде его воплощений [Abrial 1980] [Abrial 1980a] [Spivey 1988] [Spivey 1992] и VDM [Jones 1986]. Недавние расширения Z обнаружили тесную связь с ОО-идеями, см. например, Object Z [Duke 1991] и дальнейшие ссылки в гл. 11.

Фраза "разделение интересов" является центральной в работе Дейкстры, см. в частности, его "Дисциплину программирования" [Dijkstra 1976].

Понятие достаточной полноты было впервые опубликовано Гуттагом и Хорнингом [Guttag 1978] (оно основано на диссертации Гуттага 1975г.)

Идея о том, что переход от спецификации к проектированию означает переключение с неявного на явное путем отождествления АТД с декартовым произведением его простых запросов, была предложена в [M 1982] как часть теории описания структур данных в терминах трех разных уровней (физического, структурного, неявного).

Упражнения

У6.1 Точки

Написать спецификацию, задающую абстрактный тип данных ТОЧКА (POINT), моделирующий точки на плоскости в планиметрии. Эта спецификация должна отражать следующие аспекты: декартовы и полярные координаты, повороты, параллельные переносы, расстояние от начала координат, расстояние до другой точки.

У6.2 Боксеры

Члены Ассоциации Боевых Петухов - боксерской лиги - регулярно встречаются в поединках, чтобы установить их относительную силу. В поединке встречаются два боксера, и его результатом является победа одного и поражение другого боксера или ничья. Если выявлен победитель, то результат поединка используется для изменения рангов боксеров лиги: объявляется, что победитель превосходит побежденного и каждого боксера b, которого до поединка превосходил проигравший. Остальные соотношения остаются без изменений.

Опишите эту проблему как набор абстрактных типов данных: АТД_ЛИГА, БОКСЕР, ПОЕДИНОК. (Указание: не вводите явно понятие "ранг", а промоделируйте его с помощью функции "превосходит", выражающей отношение превосходства на множестве боксеров лиги.)

У6.3 Банковские счета

Написать спецификацию АТД "счет в банке" с такими операциями как "положить на счет", "снять со счета", "текущий баланс", "владелец", "смена владельца".

Каким образом добавить функции, представляющие операции открытия и закрытия счета? (Указание: эти функции являются функциями другого АТД).

У6.4 Сообщения

Рассмотрите знакомую вам систему электронной почты. Определите в духе этой лекции абстрактный тип данных ПОЧТОВОЕ_СООБЩЕНИЕ. Включите в него не только функции-запросы, но и команды и конструкторы.

У6.5 Имена

Разработайте абстрактный тип данных ИМЯ, в котором учитывались бы различные компоненты полного имени человека.

У6.6 Текст

Рассмотрите понятие текста, обрабатываемого текстовым редактором. Задайте это понятие в виде АТД. (Это задание оставляет достаточно много свободы спецификатору, не забудьте включить содержательное описание тех свойств текста, которые вы избрали для моделирования в АТД).

У6.7 Покупка дома

Напишите спецификацию абстрактного типа данных для задачи покупки дома, описанной в предыдущей лекции. Уделите особое внимание определению логических ограничений, выраженных в виде предусловий и аксиом спецификации АТД.

У6.8 Дополнительные операции для стеков

Модифицируйте спецификацию АТД для стеков, включив в нее операции count (возвращает число элементов стека), change_top (заменяет верхний элемент стека заданным элементом) и wipe_out (удаляет все элементы). Не забудьте включить необходимые аксиомы и предусловия.

У6.9 Ограниченные стеки

Измените приведенную в этой лекции спецификацию стеков так, чтобы она описывала стеки ограниченной емкости. (Указание: введите емкость как явную функцию-запрос и сделайте функцию put частичной).

У6.10 Очереди

Описать в виде АТД очереди (первым пришел - первым ушел) в том же стиле, что и стеки. Обратите внимание на общие и отличительные черты этих АТД. (Указание: аксиомы для item и remove должны отличаться, при описании put (s,x) рассмотрите случаи, когда очередь s пуста и непустая).

У6.11 Распределители

(Это упражнение предполагает, что вы выполнили предыдущее).

Определите общий АТД РАСПРЕДЕЛИТЕЛЬ, покрывающий и стеки и очереди.

Рассмотрите механизм для задания более специальных спецификаций АТД (таких как стеки и очереди) с помощью ссылок на общие спецификации такие, как спецификация распределителей. (Указание: посмотрите на механизм наследования, изучаемый в следующих лекциях).

У6.12 Булевский -- BOOLEAN

Определите абстрактный тип данных BOOLEAN так, чтобы его можно было использовать в определениях других АТД из этой лекции. Можно считать, что операции равенства и неравенства (= и ≠) автоматически определены для каждого АТД.

У6.13 Достаточная полнота

(Это упражнение предполагает, что вы выполнили одно или несколько предыдущих упражнений).

Изучите спецификацию АТД, написанную вами в качестве решения одного из предыдущих упражнений, и попытайтесь доказать, что она является достаточно полной. Если она не достаточно полная, то объясните, почему и покажите, как ее можно исправить или расширить, чтобы сделать достаточно полной.

У6.14 Непротиворечивость

Докажите, что приведенная в этой лекции спецификация стеков является непротиворечивой.


Назад
Скидка до 20% на услуги дата-центра. Аренда серверной стойки. Colocation от 1U!

Миграция в облако #SotelCloud. Виртуальный сервер в облаке. Выбрать конфигурацию на сайте!

Виртуальная АТС для вашего бизнеса. Приветственные бонусы для новых клиентов!

Виртуальные VPS серверы в РФ и ЕС

Dedicated серверы в РФ и ЕС

По промокоду CITFORUM скидка 30% на заказ VPS\VDS

VPS/VDS серверы. 30 локаций на выбор

Серверы VPS/VDS с большим диском

Хорошие условия для реселлеров

4VPS.SU - VPS в 17-ти странах

2Gbit/s безлимит

Современное железо!

Новости мира IT:

Архив новостей

IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware

Информация для рекламодателей PR-акции, размещение рекламы — adv@citforum.ru,
тел. +7 495 7861149
Пресс-релизы — pr@citforum.ru
Обратная связь
Информация для авторов
Rambler's Top100 TopList liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня This Web server launched on February 24, 1997
Copyright © 1997-2000 CIT, © 2001-2019 CIT Forum
Внимание! Любой из материалов, опубликованных на этом сервере, не может быть воспроизведен в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав. Подробнее...