Logo Море(!) аналитической информации!
IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware
Бесплатный конструктор сайтов и Landing Page

Хостинг с DDoS защитой от 2.5$ + Бесплатный SSL и Домен

SSD VPS в Нидерландах под различные задачи от 2.6$

✅ Дешевый VPS-хостинг на AMD EPYC: 1vCore, 3GB DDR4, 15GB NVMe всего за €3,50!

🔥 Anti-DDoS защита 12 Тбит/с!

VPS в 21 локации

От 104 рублей в месяц

Безлимитный трафик. Защита от ДДоС.

🔥 VPS до 5.7 ГГц под любые задачи с AntiDDoS в 7 локациях

💸 Гифткод CITFORUM (250р на баланс) и попробуйте уже сейчас!

🛒 Скидка 15% на первый платеж (в течение 24ч)

2004 г.

Linux для пользователя

Виктор Костромин, http://rus-linux.net/

Глава 2. Инсталляция ОС Linux на компьютер с Windows.

Предыдущий разделОглавлениеСледующий раздел

2.3. Разделы на диске и процесс загрузки

2.3.1. Что такое "геометрия диска"?

Как вы знаете, жесткие диски представляют собой несколько пластин с магнитным покрытием, расположенных на одной оси и вращающихся с большой скоростью. Считывание/запись информации осуществляется с помощью головок диска, расположенных одна под другой между пластинами и перемещающихся от центра к краям пластин. Окружность на магнитной пластине, которую описывает головка при вращении пластин, называется дорожкой, а совокупность таких дорожек, расположенных одна под другой (определяемая каждым фиксированным положением головок), называется цилиндром. Каждая дорожка разбита на сектора, и в сектор можно записать 512 байт полезной информации. Поэтому диски часто характеризуются совокупностью трех цифр: числом цилиндров/числом дорожек в цилиндре/числом секторов на дорожке или C/H/S (от первых букв соответствующих английских терминов: Cylinder/Head/Sector, т. е. цилиндр/головка/сектор). Эти три цифры называют "геометрией диска". Диск с геометрией C/H/S имеет объем C*H*S*512 байт.

Диски являются блочными устройствами, т. е. считывание и запись информации производится блоками, и минимальный размер блока равен одному сектору (512 байт). Для того чтобы записать информацию на диск, надо "позиционировать головку", т. е. указать контроллеру, в какой сектор эту информацию записать. Сектора как раз адресуются путем указания номера цилиндра, номера считывающей головки (или дорожки) и порядкового номера сектора на дорожке.

2.3.2. Разделы диска и таблица разбиения диска.

Физические диски в Intel-системах принято разбивать на разделы. Повелось это, кажется, из-за того, что первые версии MS-DOS не могли обеспечить доступ к большим дискам (а объемы дисков росли быстрее, чем возможности DOS). Тогда придумали разбиение дисков на разделы. Для этого в нулевой сектор диска (нулевой сектор первой дорожки на нулевом цилиндре) стали записывать так называемую таблицу разбиения диска на разделы (partition table). Каждый раздел может трактоваться как отдельный физический диск. В частности, в разные разделы могут быть установлены разные операционные системы.

Таблица разделов содержит 4 записи по 16 байт для 4 разделов, которые называют первичными. Каждая запись имеет следующую структуру:

struct partition {
  char active;      /* 0x80: раздел активный (загрузочный), 0: не активный */
  char begin[3];   /* CHS первого сектора, 24 бита
  char type;        /* тип раздела (например, 83 — LINUX_NATIVE, 
                       82 — LINUX_SWAP, 85 — LINUX_EXTENDED) */
  char end[3];      /* CHS последнего сектора, 24 бита */
  int start;            /* номер начального сектора (32-бита,
			счет начинается с 0) */
  int length;         /* число секторов в разделе (32 бита) */
};

Таблица разделов диска создается обычно с помощью программы fdisk . В ОС Linux имеется как стандартная программа fdisk (которая, впрочем, существенно отличается от программы fdisk в MS-DOS и Windows), так и еще две программы для работы с разделами диска: cfdisk и sfdisk. Программа cfdisk, как и fdisk, предназначена для работы с таблицей разделов диска: она не обращает никакого внимания на информацию, которая уже имеется на диске. Отличается она только несколько более удобным интерфейсом, предоставляющим пользователю не просто подсказку по командам, а систему меню. Программа sfdisk обладает несколько более широкими возможностями, в частности, она позволяет произвести некоторые операции над существующими разделами диска.

DOS использует поля begin и end таблицы разбиения диска и функции прерывания 13 BIOS (Int 13h) для доступа к диску, и поэтому не может использовать диски объемом более 8,4 Гбайт, даже с новым BIOS (об этом будет рассказано ниже), а разделы не могут быть более 2,1 Гбайт (но это уже из-за ограничений файловой системы FAT16).

Linux использует только поля start и length таблицы разбиения диска и поддерживает разделы, содержащие до 232 секторов, т. е. размер раздела может достигать 2 Тбайт.

Поскольку в таблице разбиения отведено только 4 строки для задания разделов, число первичных разделов на диске с самого начала ограничено: их может быть не более 4. Когда стало ясно, что и 4-х разделов мало, были изобретены логические разделы. Для этого один из первичных разделов объявляется "расширенным" (тип раздела — 5, или F, или 85 в шестнадцатеричной системе), и в нем создаются "логические разделы". Расширенные разделы сами по себе не используются, они могут лишь хранить логические разделы. Первый сектор расширенного раздела хранит таблицу разделов с четырьмя входами: один используется для логического раздела, другой для еще одного расширенного раздела, а два не используются. Каждый расширенный раздел имеет свою таблицу разбиения, в которой, как и в первичном расширенном разделе, используются только две строки, задающие один логический и один расширенный раздел. Таким образом, получается цепочка из таблиц разделов, где первая описывает три основных раздела, а каждая следующая — один логический раздел и положение следующей таблицы.

Программа sfdisk в Linux показывает всю цепочку:


[root]# sfdisk -l -x /dev/hda

Disk /dev/hda: 784 cylinders, 255 heads, 63 sectors/track
Units = cylinders of 8225280 bytes, blocks of 1024 bytes, counting from 0

Device     Boot    Start    End    #cyls     #blocks      Id    System
/dev/hda1   *       0+      189      190-    1526143+    6    FAT16
/dev/hda2        190        783      594      4771305     5    Extended
/dev/hda3           0          —         0             0          0    Empty
/dev/hda4           0          —         0             0          0    Empty

/dev/hda5        190+      380      191-    1534176     6    FAT16
   —                381        783      403      3237097+   5    Extended
   —                190        189        0                0       0    Empty
   —                190        189        0                0       0    Empty

/dev/hda6        381+      783      403-    3237066     7    HPFS/NTFS
   —                381        380          0             0        0    Empty
   —                381        380          0             0        0    Empty
   —                381        380          0             0        0    Empty

Число логических разделов в принципе не ограничено, потому что каждый логический раздел может содержать таблицу разделов и вложенные логические разделы. Однако реально ограничения все же существуют, например, Linux может работать не более чем с 15 разделами на SCSI-дисках и не более чем с 63-мя разделами на IDE-дисках.

Расширенный раздел как на физическом диске, так и в расширенном разделе вложенного расширенного раздела (предыдущего уровня) может быть только один: ни одна из существующих программ разбиения дисков (fdisk и ее усовершенствованные аналоги) не умеет создавать более одного расширенного раздела.

В Linux диск в целом (т. е. физический диск) доступен по имени устройства /dev/hda, /dev/hdb, /dev/sda, и т.п. Первичные разделы обозначаются дополнительной цифрой в имени устройства: /dev/hda1, /dev/hda2, /dev/hda3, /dev/hda4, а логические разделы в Linux доступны по именам /dev/hda5, /dev/hda6 ... (начиная с номера 5). Из сказанного выше должно быть ясно, почему могут быть пропущены имена /dev/hda3 и /dev/hda4 (третий и четвертый первичные разделы просто не были созданы) и сразу после /dev/hda2 вы увидите /dev/hda5 (логический раздел в расширенном разделе /dev/hda2), а далее нумерация идет последовательно.

В Windows логические разделы получают однобуквенные имена, начиная с последнего задействованного имени первичного раздела. Если, например, имеется один жесткий диск с двумя простыми первичными разделами (C: и D:) и одним расширенным разделом, в котором созданы два логических раздела, то эти логические разделы именуются E: и F:. Впрочем, в Windows NT и 2000 с помощью администратора дисков разделам могут быть присвоены другие буквенные имена.

2.3.3. Процесс загрузки ОС фирмы Microsoft

Какую бы операционную систему мы ни рассматривали, для того, чтобы ОС могла начать управлять компьютером, ее необходимо загрузить в оперативную память. Поэтому давайте кратко рассмотрим, как происходит процесс загрузки разных ОС. Поскольку нас интересует только загрузка с жестких дисков, то мы не будем рассматривать особенности загрузки с дискеты, CD-ROM и по сети. Начнем с доброй старой MS-DOS и MS Windows (не забывайте, что разработка и совершенствование персональных компьютеров шло параллельно с развитием ОС от Microsoft и решения, использованные в этих ОС, оказывали сильное влияние на те решения, которые принимались разработчиками аппаратуры).

Как вы знаете, при включении компьютера вначале запускается программа POST (Power On Self Test). Она определяет количество доступной памяти, тестирует ее, определяет наличие других компонент (клавиатура, винчестер...), инициализирует карты адаптеров. На экране обычно появляются сообщения о количестве памяти, о ее тестировании, перечень обнаруженных устройств (гибкие и жесткие диски, процессор, COM-порты и т. д.).

После завершения тестирования POST вызывает Int 19h, которое пытается найти загрузочное устройство. Поиск производится в том порядке, который определен в Setup BIOS, и осуществляется путем опроса нулевых секторов соответствующих устройств. Если диск является загрузочным, то в его нулевом секторе находится главная загрузочная запись — Master Boot Record (MBR). Последние два байта MBR — это "магическое число", которое является признаком того, что данный сектор есть MBR, а, следовательно, диск является загрузочным. Кроме "магического числа" MBR содержит таблицу разделов диска, о которой уже было сказано выше, и маленькую программу — первичный загрузчик, объемом всего 446 (0x1BE) байт.

В табл. 2.1 представлена структура главного загрузочного сектора, создаваемого при инсталляции Windows.

Таблица 2.1. Структура главного загрузочного сектора.

Смещение

Содержание

0x000

Код первичного загрузчика

0x1BE

Таблица разбиения диска

0x1FE

"Магическое число" (0xAA55)

MS-DOS, Windows95 и NT записывают DOS MBR при инсталляции. Стандартное для MS содержимое MBR можно также записать командой fdisk /mbr.

Но вернемся к описанию процесса загрузки. Прерывание 19h BIOS загружает первичный загрузчик в память компьютера и передает управление этой программе. Но такой маленькой программе не под силу загрузить ОС; все, что она может сделать — это загрузить в память более мощную программу — вторичный загрузчик.

Для этого она ищет в таблице разделов активный раздел и считывает в память вторичный загрузчик, который располагается начиная с первого логического сектора активного раздела. Обратите внимание на слово "начиная". Дело в том, что вторичный загрузчик в разных системах имеет разную длину.

В разделе, отформатированном под файловую систему FAT, вторичный загрузчик занимает один сектор (512 байт). В разделе, отформатированном под файловую систему NTFS, вторичный загрузчик занимает уже несколько секторов.

Вторичный загрузчик загружает первый слой программ, необходимых для запуска операционной системы. В случае MS DOS программа-загрузчик загружает IO.SYS по адресу 700h, затем MSDOS.SYS и передает управление разделу SYSINIT модуля IO.SYS.

Если по каким-либо причинам на диске не найден активный раздел, процесс загрузки продолжается обработкой прерывания 18h. Эта ветвь реально используется очень редко, но такая возможность может быть очень полезна в некоторых ситуациях. При удаленной загрузке, когда операционная система загружается с сервера, это прерывание перенаправляется программой POST на ROM сетевой карты.

Для других ОС от Microsoft процесс загрузки происходит аналогично

  • Windows95 загружается так же, как и DOS, но заменяет IO.SYS и MSDOS.SYS своими файлами. Файлы DOS сохраняются под именами IO.DOS и MSDOS.DOS соответственно. Когда вы выбираете загрузку сохраненного DOS, Windows95 переименовывает свои файлы в файлы с расширением w40 и восстанавливает первоначальные имена системных файлов DOS. Процесс продолжается с загрузки DOS-овского IO.SYS. Таким образом, загрузочные сектора DOS и Windows95 одинаковые.

  • Windows NT4 использует MBR DOS, но заменяет загрузочную запись активного раздела таким образом, что вместо IO.SYS загружается NTLDR. Это уже мощная программа, которая многое может сделать. В частности, она находит файл boot.ini и, если параметр timeout больше 0, предлагает меню загрузки.

Каждая строка секции [operating systems] файла boot.ini определяет один из вариантов загрузки и строится по следующему шаблону

адрес_вторичного_загрузчика="название_варианта"

Адресом вторичного загрузчика может являться указание на конкретный раздел диска или на файл загрузчика. Вот пример файла boot.ini:

[operating systems]

multi(0)disk(0)rdisk(0)partition(3)\WINNT="Windows NT Workstation 4.00 RUS"

multi(0)disk(0)rdisk(0)partition(3)\WINNT="Windows NT Workstation 4.00 RUS [VGA mode]" /basevideo /sos

C:\="Microsoft Windows"

C:\BOOTSECT.LNX="Linux"

Если пользователь выбирает NT, то выполняется загрузка по адресу раздела, указанному в первой строке раздела. В строке, соответствующей Microsoft Windows, указан просто диск "C:\", так как имя загрузочного файла берется по умолчанию: bootsect.dos. Файл грузится в память и загрузка продолжается так, как если бы загрузочная запись раздела была загружена программным кодом из MBR.

Для загрузки других систем можно воспользоваться таким же приемом. Для этого в boot.ini нужно добавить строки, содержащие ссылки на другие загрузочные файлы. При выборе такой строки будет загружаться соответствующая ОС. В приведенном выше примере этим способом обеспечивается загрузка Linux. Для этого в файле C:\BOOTSECT.LNX должно быть предварительно записано содержимое загрузочной записи, создаваемой Linux (точнее — LILO, стандартным загрузчиком Linux).

2.3.4. Проблемы с большими дисками

В MS-DOS и первых версиях Windows доступ к дискам был организован через прерывание 13 (Int 13h) BIOS (в том числе на этапе начальной загрузки ОС). При этом использовалась адресация секторов на диске на основе указания номеров цилиндра, головки и сектора на дорожке (C/H/S). Точнее:

  • AH — выбор операции;
  • CH — младшие 8 бит номера цилиндра;

  • CL — 7-6 биты соответствуют старшим битам номера цилиндра, 5-0 биты соответствуют номеру сектора;

  • DH — номер считывающей головки;

  • DL — номер диска (80h или 81h).

(Заметим в скобках, что нумерацию физических цилиндров и дорожек принято начинать с 0, а сектора на дорожке нумеруют, начиная с 1). Однако практически головок было не более 16-ти, а число секторов на дорожке — не более 63, и хотя для указания цилиндра использовалось 10 бит, все равно BIOS не мог работать с дисками объемом более 1024*63*16*512 = 528 Мбайт.

Для преодоления этого ограничения стали применять разные хитрые приемы (подробнее об этом вы можете узнать из [П4.2]). Например, Extended CHS (ECHS) или "Large disk support" (иногда обозначается просто как "Large") использует еще три незанятых бита номера головки для увеличения числа адресуемых цилиндров. Это позволило использовать "фальшивую геометрию диска" в 1024 цилиндра, 128 считывающих головок и 63 сектора/дорожку. Трансляцию Extended CHS в реальный CHS-адрес (который может иметь до 8192 цилиндров) осуществляет BIOS. Это позволяет работать с дисками, объемом до 8192*16*63*512 = 4 227 858 432 байт или 4,2 Гбайт.

Но разработчики все увеличивали плотность записи на диск, число пластин и дорожек, изобретали другие способы увеличения объема дисков. В частности, число секторов на дорожках стало разным (на более длинных дорожках, расположенных ближе к краю пластин, число секторов стали увеличивать). В результате три числа C/H/S уже перестали правильно отражать "геометрию диска", а старые версии BIOS перестали обеспечивать доступ ко всему дисковому пространству.

Тогда придумали другой прием для работы с большими дисками через Int 13h — линейную адресацию блоков ("Linear Block Addressing" или LBA). Если не вдаваться в подробности, то можно сказать, что все сектора на диске нумеруются последовательно, начиная с первого сектора на нулевой дорожке нулевого цилиндра. Вместо CHS-адреса каждый сектор получает логический адрес — просто его порядковый номер в общем массиве секторов. Нумерация логических секторов начинается с нуля, причем нулевой сектор содержит главную загрузочную запись (MBR). В Setup BIOS поддержка преобразования линейного номера в CHS-адрес обозначается как "поддержка LBA". Таким образом, в новых версиях BIOS обычно имеется выбор из трех вариантов: "Large", "LBA" и "Normal" (последнее означает, что трансляция адресов не производится).

Но и в режиме LBA обращение к физическому диску все равно осуществляется через функции Int 13h, которые используют 3D нотацию (C,H,S). В силу этого возникает ограничение на возможный объем диска: BIOS, и, следовательно, MS-DOS и ранние версии Windows, не могли адресовать диски объемом более 8,4 Гбайт.

Надо заметить, что указанное ограничение относится только к дискам с интерфейсом IDE. В контроллерах SCSI-дисков номер сектора переводится в команды SCSI, а далее сам диск находит нужную позицию, поэтому такого ограничения на объем диска не возникает.

Еще раз хочется отметить, что все перечисленные ограничения существенны только на этапе загрузки ОС, поскольку сама Linux и последние версии Windows при работе с дисками уже не используют прерывание 13 BIOS, а используют собственные драйвера для работы с дисками. Но, прежде чем система сможет использовать собственный драйвер, она должна как минимум его загрузить. Поэтому на этапе начальной загрузки любая система вынуждена пользоваться BIOS. Это и вызывает ограничения на размещение многих систем за пределами 8 Гбайт, они не могут оттуда загружаться, хотя после успешной загрузки могут работать с дисками гораздо большего объема. Для того, чтобы понять, как можно обойти эти ограничения, нам потребуются некоторые знания о том, как происходит загрузка ОС Linux.
Предыдущий разделОглавлениеСледующий раздел

Скидка до 20% на услуги дата-центра. Аренда серверной стойки. Colocation от 1U!

Миграция в облако #SotelCloud. Виртуальный сервер в облаке. Выбрать конфигурацию на сайте!

Виртуальная АТС для вашего бизнеса. Приветственные бонусы для новых клиентов!

Виртуальные VPS серверы в РФ и ЕС

Dedicated серверы в РФ и ЕС

По промокоду CITFORUM скидка 30% на заказ VPS\VDS

VPS/VDS серверы. 30 локаций на выбор

Серверы VPS/VDS с большим диском

Хорошие условия для реселлеров

4VPS.SU - VPS в 17-ти странах

2Gbit/s безлимит

Современное железо!

Новости мира IT:

Архив новостей

IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware

Информация для рекламодателей PR-акции, размещение рекламы — adv@citforum.ru,
тел. +7 495 7861149
Пресс-релизы — pr@citforum.ru
Обратная связь
Информация для авторов
Rambler's Top100 TopList liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня This Web server launched on February 24, 1997
Copyright © 1997-2000 CIT, © 2001-2019 CIT Forum
Внимание! Любой из материалов, опубликованных на этом сервере, не может быть воспроизведен в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав. Подробнее...