Logo Море(!) аналитической информации!
IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware
Скидка до 20% на услуги дата-центра. Аренда серверной стойки. Colocation от 1U!

Миграция в облако #SotelCloud. Виртуальный сервер в облаке. Выбрать конфигурацию на сайте!

Виртуальная АТС для вашего бизнеса. Приветственные бонусы для новых клиентов!

Виртуальные VPS серверы в РФ и ЕС

Dedicated серверы в РФ и ЕС

По промокоду CITFORUM скидка 30% на заказ VPS\VDS

VPS/VDS серверы. 30 локаций на выбор

Серверы VPS/VDS с большим диском

Хорошие условия для реселлеров

4VPS.SU - VPS в 17-ти странах

2Gbit/s безлимит

Современное железо!

2004 г.

3.1. Кабельные каналы связи

Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru

Кабельные каналы для целей телекоммуникаций исторически использовались первыми. Да и сегодня по суммарной длине они превосходят даже спутниковые каналы. Основную долю этих каналов, насчитывающих многие сотни тысяч километров, составляют телефонные медные кабели. Эти кабели содержат десятки или даже сотни скрученных пар проводов. Полоса пропускания таких кабелей обычно составляет 3-3,5 кГц при длине 2-10 км. Эта полоса диктовалась ранее нуждами аналогового голосового обмена в рамках коммутируемой телефонной сети. C учетом возрастающих требованиям к широкополосности каналов скрученные пары проводов пытались заменить коаксиальными кабелями, которые имеют полосу от 100 до 500 МГц (до 1 Гбит/с), и даже полыми волноводами. Именно коаксиальные кабели стали в начале транспортной средой локальных сетей ЭВМ (10base-5 и 10base-2; см. рис. 3.1.1).

Рис. 3.1.1. 1 - центральный проводник; 2 - изолятор; 3 - проводник-экран; внешний изолятор

Коаксиальная система проводников из-за своей симметричности вызывает минимальное внешнее электромагнитное излучение. Сигнал распространяется по центральной медной жиле, контур тока замыкается через внешний экранный провод. При заземлении экрана в нескольких точках по нему начинают протекать выравнивающие токи (ведь разные “земли” обычно имеют неравные потенциалы). На рис. 3.1.1а проиллюстрирована схема наводок по экрану коаксиального кабеля. Входной сигнал Авх подается через центральную жилу с одно стороны кабеля. На противоположной стороне кабель нагружен на сопротивление R, равное волновому импедансу кабеля. Если экран кабеля соединен с землей на обоих концах, то при наличии источника наводок по экрану будет протекать переменный ток наводки.

cable_ns.gif

Рис. 3.1.1a. Схема наводок по экрану коаксиального кабеля

Импульсное значение наводки UН будет пропорционально L(dIH/dt), где L - индуктивность оплетки кабеля, а IH - ток наводки. В результате наводка сложится с входным сигналом. При определенных обстоятельствах это может даже привести к выходу из строя сетевого оборудования. Именно это является причиной требования заземления кабеля локальной сети только в одной точке. Наибольшее распространение получили кабели с волновым сопротивлением 50 ом. Это связано с тем, что эти кабели из-за относительно толстой центральной жилы характеризуются минимальным ослаблением сигнала (волновое сопротивление пропорционально логарифму отношения диаметров внешнего и внутреннего проводников).

Коаксиальный кабель с полосой пропускания 500 МГц при ограниченной длине может обеспечить скорость передачи несколько Гбит/сек. Предельные расстояния, для которых может быть применен коаксиальный кабель составляет 10-15 км.

Но по мере развития технологии скрученные пары смогли вытеснить из этой области коаксиальные кабели. Это произошло, когда полоса пропускания скрученных пар достигла 200-350 МГц при длине 100м (неэкранированные и экранированные скрученные пары категории 5 и 6), а цены на единицу длины сравнялись. Скрученные пары проводников позволяют использовать биполярные приемники, что делает систему менее уязвимой (по сравнению с коаксиальными кабелями) к внешним наводкам. Но основополагающей причиной вытеснения коаксиальных кабелей явилась относительная дешевизна скрученных пар. Скрученные пары бывают одинарными, объединенными в многопарный кабель или оформленными в виде плоского ленточного кабеля. Применение проводов сети переменного тока для локальных сетей и передачи данных допустимо для весьма ограниченных расстояний. В таблице 3.1.1 приведены характеристики каналов, базирующихся на обычном и широкополосном коаксиальном кабелях.

Таблица 3.1.1

  Стандартный кабель Широкополосный
Максимальная длина канала 2 км 10 - 15 км
Скорость передачи данных 1 - 50 Мбит/с 100 - 140 Мбит/с
Режим передачи полудуплекс дуплекс
Ослабление влияния электромагнитных и радиочастотных наводок 50 дБ 85 дБ
Число подключений < 50 устройств 1500 каналов с одним или более устройств на канал
Доступ к каналу CSMA/CD FDM/FSK

На рис. 3.1.2 показана зависимость ослабления кабеля (внешний диаметр 0,95 см) от частоты передаваемого сигнала.

При диагностировании сетей не всегда под руками может оказаться настоящий сетевой тестер типа WaveTek, и часто приходится довольствоваться обычным авометром. В этом случае может оказаться полезной таблица 3.1.2, где приведены удельные сопротивления используемых сетевых кабелей. Произведя измерение сопротивления сегмента, вы можете оценить его длину.


Рис. 3.1.2. Зависимость ослабления сигнала в кабеле от его частоты

Таблица 3.1.2 Сопротивление кабеля по постоянному току

Коаксиал Ом/сегмент Максимальная длина сегмента
10BASE5 5 500 м
10BASE2 10 185 м

Эти данные взяты из Handbook of LAN Cable Testing. Wavetek Corporation, California

.
Скрученная пара Ом/100 м
24 AWG 18,8
22 AWG 11,8

Таблица 3.1.3. Новые европейские стандарты для скрученных пар (CENELEC)


Стандарт Назначение Экран Полоса пропускания
EN 50288-2-1 Для магистральной прокладки + < 100 МГц (кат. 5)
EN 50288-2-2 Для подключения приборов и коммутации + < 100 МГц (кат. 5)
EN 50288-3-1 Для магистральной прокладки - < 100 МГц (кат. 5)
EN 50288-3-2 Для подключения приборов и коммутации - < 100 МГц (кат. 5)
EN 50288-4-1 Для магистральной прокладки + < 600 МГц (кат. 7)
EN 50288-4-2 Для подключения приборов и коммутации + < 600 МГц (кат. 7)
EN 50288-5-1 Для магистральной прокладки + < 250 МГц (кат. 6)
EN 50288-5-2 Для подключения приборов и коммутации + < 250 МГц (кат. 6)
EN 50288-6-1 Для магистральной прокладки - < 250 МГц (кат. 6)
EN 50288-6-2 Для подключения приборов и коммутации - < 250 МГц (кат. 6)

Таблица 3.1.3A. Обзор категорий кабелей со скрученными парами проводов (ISO/IEC 11801 = EN 50173)

Категория

Полоса пропускания

Применения

3 до 16 МГц Ethernet, Token Ring, телефон
4 до 20 МГц Ethernet, Token Ring, телефон
5 до 100 МГц Ethernet, ATM, FE,Token Ring, телефон
6 до 200/250 МГц GigaEthernet,Ethernet, FE, ATM, Token Ring
7 до 600 МГц GigaEthernet,Ethernet, FE, ATM, Token Ring

Таблица 3.1.3A1. Обзор классов соединений согласно требованиям ISO/IEC 11801 (EN 50173)

Класс Категория Применение
A   Голос и сетевые приложения до 100 кГц
B   Информационные приложения до 1 МГц
С 4 Информационные приложения до 16 МГц
D 5-5e Информационные приложения до 100 МГц
E 6 Информационные приложения до 200/250 МГц
F 7 Информационные приложения до 600 МГц
LWL   Информационные приложения от 10 МГц

Таблица 3.1.3Б. Новые европейские стандарты на разъемы для скрученных пар (CENELEC)

Стандарт Экран Полоса пропускания
EN 60603-7-2 - < 100 МГц (кат. 5)
EN 60603-7-3 + < 100 МГц (кат. 5)
EN 60603-7-4 - < 250 МГц (кат. 6)
EN 60603-7-5 + < 250 МГц (кат. 6)
EN 60603-7-7 + < 600 МГц (кат. 7)

Конкретные зависимости ослабления сигнала от частоты и длины кабеля в децибелах представлены в таблице ниже (LANline Special IV/2002 p/26).

Частота
[МГц]

Ослабление для кабеля категории 5 [дБ]

Ослабление для кабеля категории 6 [дБ]

Кабель 2 м

Кабель 5 м

Кабель 10 м

Кабель 2 м

Кабель 5 м

Кабель 10 м

1 72.9 71.6 70.1 65.0 65.0 65.0
4 61.0 59.7 58.4 65.0 65.0 65.0
16 49.1 48.0 46.9 62.0 60.5 59.0
62.5 37.6 36.8 36.0 50.4 49.2 48.1
100.0 33.7 33.0 32.5 46.4 45.3 44.4
200.0       43.0 42.1 41.4
250.0       38.8 38.1 37.6

Данные, приведенные в таблице 3.1.2, могут использоваться для оперативной предварительной оценки качества кабельного сегмента (соответствует стандарту EIA/TIA 568, 1991 год). Частотные характеристики неэкранированных пар категории 6 представлены в табл. 3.1.5.

Таблица 3.1.5. Параметры неэкранированных пар категории 6

Частота, МГц Затухание, дБ/100м NEXT, дБ ACR, дБ/100м
1 2,3 62 60
10 6,9 47 41
100 23,0 38 23
300 46,8 31 4

Смотри www.osp.ru/lan/lan_6_96/source/57.htm

ACR - Attenuation-to-Crosstalk Ratio.
NEXT - Near End CrossTalk.

Кабели, изготовленные из скрученных пар категории 5 (волновое сопротивление 100,15 Ом), с полосой 100 Мгц обеспечивают пропускную способность при передаче сигналов ATM 155 Мбит/с. При 4 скрученных парах это позволяет осуществлять передачу до 622 Мбит/с. Кабели категории 6 сертифицируются до частот 300 Мгц, а экранированные и до 600 Мгц (волновое сопротивление 100 Ом). В таблице 3.1.6 приведены данные по затуханию и перекрестным наводкам. Приведены характеристики такого кабеля с 4-мя скрученными экранированными парами (S-FTP).

Таблица 3.1.6

Частота, МГц Затухание, дБ/100м NEXT, дБ ACR, дБ/100м
1 2,1 80 77,9
10 6,0 80 74
100 19,0 70 51
300 33,0 70 37
600 50 60 10

NEXT - Near End Cross Talk - перекрестные наводки ближнего конца кабеля.
ACR - Attenuation-to Crosstalk Ratio.

Такой кабель пригоден для передачи информации со скоростью более 1 Гбит/с. ACR - Attenuation-to-Crosstalk Ratio (отношение ослабления к относительной величине перекресных наводок).

Ниже на рис. 3.1.3 показана зависимость наводок на ближнем конце кабеля, содержащего скрученные пары, (NEXT - Near End CrossTalk) от частоты передаваемого сигнала.

Рис. 3.1.3. Зависимость наводок NEXT от частоты передаваемого сигнала.

На рис. 3.1.4 представлена зависимость ослабления сигнала в неэкранированной скрученной паре (именно такие кабели наиболее часто используются для локальных сетей) от частоты передаваемого сигнала. Следует иметь в виду, что при частотах в области сотен мегагерц и выше существенный вклад начинает давать поглощение в диэлектрике. Таким образом, даже если проводники изготовить из чистого золота, существенного продвижения по полосе пропускания достичь не удастся.

Рис. 3.1.4. Зависимость ослабления сигнала от частоты для неэкранированной скрученной пары

Для неэкранированной скрученной пары 5-ой категории зависимость отношения сигнал-шум от длины с учетом ослабления и наводок NEXT показана на рис. 3.1.5.

Рис. 3.1.5 Зависимость отношения сигнал/шум от частоты с учетом ослабления и наводок на ближнем конце кабеля

Характеристики неэкранированных скрученных пар американского стандарта 24 AWG (приведены характеристики кабелей, используемых при построении локальных сетей) для кабелей различной категории собраны в таблице 3.1.7, а частотные свойства кабелей классов E и F показаны на рис. 3.1.6 и 3.1.7 (ISO/IEC 11801:2002). Некоторые данные, важные при использовании скрученных пар для целей 1000Base-T и 10GBase-T, можно найти в разделе FAST Ethernet.

Рис. 3.1.6. Зависимость частотных свойст кабелей класса Е, а также NEXT, FEXT, Return Loss и Insertion Loss от частоты

Рис. 3.1.7. Зависимость частотных свойст кабелей класса F, а также NEXT, FEXT, Return Loss и Insertion Loss от частоты

Таблица 3.1.7.

Категория кабеля Сопротивление по постоянному току (L=300м) Ослабление [дБ] NEXT [дБ]
III 28,4 17 @ 4 МГц
30 @ 10 МГц
40 @ 16 МГц
32 @ 4 МГц
26 @ 10 МГц
23 @ 16 МГц
IV 28,4 13 @ 4 МГц
22 @ 10 МГц
27 @ 16 МГц
31 @ 20 МГц

47 @ 4 МГц
41 @ 10 МГц
38 @ 16 МГц
36 @ 20 МГц

V 28,4 13 @ 4 МГц
20 @ 10 МГц
25 @ 16 МГц
28 @ 20 МГц
67 @ 100 МГц
53 @ 4 МГц
47 @ 10 МГц
44 @ 16 МГц
42 @ 20 МГц
32 @ 100 МГц

Новые Ethernet протоколы 1000BASE-T и 10GBASE-T требуют применения скрученных пар существенно более высокого качества (с большей полосой пропускания, с более низкими уровнями NEXT и FEXT). Передача в этом случае производится по четырем скрученным парам одновременно. (Смотри ieee802.3/10GBT.) Предполагается, что эта технология станет стандартной в первой половине 2006 года и станет частью спецификации IEEE 803.3ae. Требования к кабелю определяются документом ISO/IEC-11801:2002 для классов D или выше.

Подводя итоги можно сказать, что при расстояниях до 100 метров с успехом могут использоваться скрученные пары и коаксиальные кабели, обеспечивая полосу пропускания до 150 Мбит/с, при больших расстояниях или более высоких частотах передачи оптоволоконный кабель предпочтительнее. Следует заметить, что работа с кабелями предполагает необходимость доступа к системе канализации (иногда это требует специальных лицензий; а там часто размещаются усилители-повторители). Кабельное хозяйство требует обслуживания. В этом отношении радиоканалы предпочтительнее, ведь случаев коррозии электромагнитных волн не зарегистрировано, да и крысы их не грызут. Справедливости ради отмечу, что здесь серьезную угрозу представляют корыстолюбивые бюрократы, ответственные за выдачу лицензий, а они пострашнее крыс.


Бесплатный конструктор сайтов и Landing Page

Хостинг с DDoS защитой от 2.5$ + Бесплатный SSL и Домен

SSD VPS в Нидерландах под различные задачи от 2.6$

✅ Дешевый VPS-хостинг на AMD EPYC: 1vCore, 3GB DDR4, 15GB NVMe всего за €3,50!

🔥 Anti-DDoS защита 12 Тбит/с!

VPS в 21 локации

От 104 рублей в месяц

Безлимитный трафик. Защита от ДДоС.

🔥 VPS до 5.7 ГГц под любые задачи с AntiDDoS в 7 локациях

💸 Гифткод CITFORUM (250р на баланс) и попробуйте уже сейчас!

🛒 Скидка 15% на первый платеж (в течение 24ч)

Новости мира IT:

Архив новостей

IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware

Информация для рекламодателей PR-акции, размещение рекламы — adv@citforum.ru,
тел. +7 495 7861149
Пресс-релизы — pr@citforum.ru
Обратная связь
Информация для авторов
Rambler's Top100 TopList liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня This Web server launched on February 24, 1997
Copyright © 1997-2000 CIT, © 2001-2019 CIT Forum
Внимание! Любой из материалов, опубликованных на этом сервере, не может быть воспроизведен в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав. Подробнее...