Logo Море(!) аналитической информации!
IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware
Обучение от Mail.Ru Group.
Онлайн-университет
для программистов с
гарантией трудоустройства.
Набор открыт!
2007 г.

Методы добычи данных при построении локальной метрики в системах вывода по прецедентам

Л. Е. Карпов, В. Н. Юдин
Препринт ИСП РАН

Назад   Оглавление   Вперёд

7. Описание контекстно-зависимой локальной метрики

Локальная метрика, основанная на классах эквивалентности, делит все объекты на две группы: входящие в один класс с текущим, и не входящие. Она может принимать только два значения. Если текущий случай попал в класс, то близкими (равными по метрике) ему могут считаться прецеденты этого же класса. Остальные – не равны. Такая метрика не полностью учитывает взаимоотношения между текущим объектом и окружающими (контекст), особенно когда они выражаются через пересечение классов и попадание объекта в область пересечения.

В каких случаях объект попадает в пересечение классов? Формирование классов происходит до рассмотрения исследуемого объекта, и естественно, не в его признаковом пространстве. На этапе предварительной обработки, когда объекты собирают в классы, признаковым пространством для класса будет общее для всех признаков этого класса пространство. Далее, после того, как классы сформированы, естественно рассматривать их в общем для них признаковом пространстве (в транзитивном замыкании пространств всех объектов).

При рассмотрении исследуемого объекта отнесение его к нескольким классам может возникать, когда у этого объекта часть признаков по отношению к этим классам отсутствует. Другая причина возникает из-за недостаточной или некачественной информации при обучении или при разделении на классы.

Проиллюстрируем такой случай на простом примере (Рис. 2).

 

 

Рис. 2. Отнесение недостаточно описанного объекта к двум классам.

Два непересекающихся класса, A и B, описаны в пространстве признаков {X1, X2}. Объект исследования O представлен одним признаком X1, признак X2 у объекта отсутствует. На основе имеющейся информации объект может быть отнесен к обоим классам.

Для более точной оценки нужно было бы добавить контрольному объекту значение признака X2 (так же поступают и в медицине: если имеющихся показателей не хватает для дифференцирования заболеваний, только дополнительное исследование позволит сделать окончательный вывод), но на практике это не всегда возможно.

До сих пор считалось, что попадание объекта в область пересечения классов является препятствием для оценки объекта. Когда от этой ситуации не уйти, ее надо постараться использовать. Для этого будем использовать аналоги – объекты соответствующих классов, попадающие в ту же область пересечения.

Предположим, база прецедентов подверглась предварительной обработке – разбиению на классы эквивалентности. Три способа такого разбиения были указаны в предыдущем разделе. Рассмотрим один из них – кластеризацию – как частный случай, не требующий предварительного обучения.

При рассмотрении текущего случая точка, соответствующая ему, сравнивается с пространственным расположением кластеров в проекции на пространство его признаков. Близкими считаются прецеденты, принадлежащие кластеру, в который попадает случай. Если он попал в область пересечения кластеров, то ближайшими к нему будут прецеденты, также находящиеся в области пересечения (очевидно, что они могут быть наиболее полезны при выборе решения).

Допустим, он попал в область пересечения кластеров. В зависимости от сложности пересечения, мы можем разделить все объекты на группы (Рис. 3). Прецеденты, находящиеся в одной с текущим случаем области пересечения, естественно считать более близкими к нему, чем те, что находятся только в одном из кластеров, потому что с тем же набором признаков, что и текущий случай, они подобны ему по принадлежности к понятиям, обозначаемым кластерами.

Сравнив введенное понятие близости с тем, что говорилось в предыдущем разделе, нетрудно заметить, что предложенная метрика является локальной и контекстно-зависимой. Локальной, потому что привязана к текущему случаю, контекстной – потому что зависит от его набора признаков. Приведем более строгое определение предлагаемой меры:

Расстояние между текущим случаем и прецедентом равно разности количества кластеров, куда попал текущий случай, и количества кластеров из этого числа, в котором находится прецедент.

Это значит, что расстояние между текущим случаем и прецедентом, находящимся в той же области пересечении кластеров, равно нулю.

На Рис. 3 цифрами помечены области с соответствующим этим цифрам расстоянием между текущим случаем и прецедентами из этой области.

Рис. 3. Степени близости прецедентов.

Предложенная локальная метрика не является метрикой в классическом понимании, а только имеет интерпретацию расстояния. Для нее не гарантируется выполнение правила симметричности, потому что она привязана к объекту, и при переходе к другому объекту будет рассматриваться уже в его пространстве признаков. По этой же причине не гарантируется выполнение правила треугольника. Однако она позволяет учитывать контекст взаимоотношений объекта с окружающими, особенно в непосредственной близости от него.

Назад   Оглавление   Вперёд

Новости мира IT:

Архив новостей

Последние комментарии:

Релиз ядра Linux 4.14  (6)
Пятница 17.11, 16:12
Apple запустила Pay Cash (2)
Четверг 09.11, 21:15
Loading

IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware

Информация для рекламодателей PR-акции, размещение рекламы — adv@citforum.ru,
тел. +7 985 1945361
Пресс-релизы — pr@citforum.ru
Обратная связь
Информация для авторов
Rambler's Top100 TopList liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня This Web server launched on February 24, 1997
Copyright © 1997-2000 CIT, © 2001-2015 CIT Forum
Внимание! Любой из материалов, опубликованных на этом сервере, не может быть воспроизведен в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав. Подробнее...