Logo Море(!) аналитической информации!
IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware
Обучение от Mail.Ru Group.
Онлайн-университет
для программистов с
гарантией трудоустройства.
Набор открыт!
2007 г.

Методы добычи данных при построении локальной метрики в системах вывода по прецедентам

Л. Е. Карпов, В. Н. Юдин
Препринт ИСП РАН

Назад   Оглавление   Вперёд

4. Интегрированный подход к построению систем поддержки принятия решений

4.1. Два подхода к интеграции вывода на основе прецедентов и добычи данных

Тому, что вывод по прецедентам – не только парадигма, но и равноправный партнер добычи данных, когда оба метода могут использовать результаты работы друг друга, до сих пор уделялось небольшое внимание, хотя и было признано важным [Fayyad 96].

Какова мотивация для интеграции двух методов? Оба используются для обработки информации в целях улучшения качества решений, однако, используя интегрированный подход, можно, по-видимому, получить большую отдачу от информации, чем, используя любой из методов в отдельности. Сочетание двух методов позволяет сформулировать и реализовать на практике принципиально новый подход к построению интеллектуальных систем. Можно привести слова математика Сеймура Паперта: "Некоторые из наиболее серьезных шагов в умственном развитии человечества основаны не просто на приобретении новых знаний, а на приобретении новых административных способов использовать то, что каждый уже знает".

Вывод по прецедентам сильно зависит от качества и количества собранных данных, от знаний о проблемной области и способов отбора наиболее релевантных прецедентов. Метод больше подходит для областей, о которых мы имеем недостаточно знаний.

В свою очередь, некоторые алгоритмы добычи данных сами требуют фонового знания, которое может быть получено с помощью прецедентов.

Вывод по прецедентам и добыча данных могут быть интегрированы несколькими способами. В зависимости от этого один из методов можно рассматривать как главный (master), а другой – в качестве вспомогательного (slave).

4.2. Использование методов добычи данных в системах вывода по прецедентам

Добыча данных позволяет находить дополнительные знания о проблемной области в виде паттернов, которые могут использоваться как фоновое знание в выводе по прецедентам:

  • для вычисления степени близости между прецедентами (одним из таких способов является разбиение прецедентов на классы эквивалентности, когда близкими текущему случаю считаются прецеденты того же класса),
  • для получения дополнительных знаний из базы прецедентов, что позволяет, например, выявлять значимость признаков и заполнять отсутствующие признаки,
  • при адаптации решения,
  • и даже при добавлении прецедентов (добыча данных может помочь найти дополнительные знания в базе данных и представить это как сконструированный прецедент).
4.3. Использование прецедентов в системах добычи данных

Учитывая, что процесс добычи данных может быть затратным, информация о достигнутых результатах и о процессе в целом может быть сохранена в виде прецедента, чтобы не тратить время на выработку одних и те же паттернов. Потребность в таком подходе впервые была озвучена в рамках обсуждения проекта CRISP-DM [Anand 97/1] при попытке выработать стандартную модель процесса добычи данных. В ходе него было заявлено: "Стандартная методология добычи данных должна обеспечить возможность фиксации и многократного использования опытов, а также управления проектами".

Прецеденты могут использоваться для нахождения некоторого фонового знания в базе данных, например, весов признаков для классификатора. В байесовской сети структура сети может быть изначально установлена с помощью "экспертного знания" (на основе прецедентов), а параметры уточнены с помощью алгоритмов добычи данных.

Прецеденты могут также использоваться, чтобы обеспечить утилитарность, критический анализ (обоснованность) и проверку новизны для алгоритмов добычи данных.

Назад   Оглавление   Вперёд

Новости мира IT:

Архив новостей

Последние комментарии:

Релиз ядра Linux 4.14  (6)
Пятница 17.11, 16:12
Apple запустила Pay Cash (2)
Четверг 09.11, 21:15
Loading

IT-консалтинг Software Engineering Программирование СУБД Безопасность Internet Сети Операционные системы Hardware

Информация для рекламодателей PR-акции, размещение рекламы — adv@citforum.ru,
тел. +7 985 1945361
Пресс-релизы — pr@citforum.ru
Обратная связь
Информация для авторов
Rambler's Top100 TopList liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня This Web server launched on February 24, 1997
Copyright © 1997-2000 CIT, © 2001-2015 CIT Forum
Внимание! Любой из материалов, опубликованных на этом сервере, не может быть воспроизведен в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав. Подробнее...