

American Institute of Aeronautics and Astronautics

1

Software Development Principles Applied to Graphical
Model Development

Paul A. Barnard*
The MathWorks, Natick, MA 01760, USA

The four fundamental principles of good software design—communicate clearly, think in
modules, automate where possible, and test early and often—are as relevant today as they
were thirty years ago. Until recently, however, they were confined to software development.
Model-Based Design has broken down that barrier. Modeling and simulation have long been
key components of aerospace vehicle development. The increasing complexity of aerospace
systems is driving a need for high-fidelity simulations of the vehicle and the control
algorithms during multiple program phases. By using graphical modeling techniques and
Model-Based Design, design engineers can create dynamic system models for simulating the
vehicle and the control algorithms and use those models at every stage of development—
from requirements capture to design, implementation, and test. Companies that have
adopted Model-Based Design report time and productivity increases as high as 60 percent.
Model-Based Design brings dramatic results not only because it streamlines the workflow,
but also because it brings the principles of good software design into the world of the control
and signal processing engineer.

I. The Evolution of Software Design Principles
Software engineering has had a long history in the aerospace and defense industry. Since the days when a

mainframe computer filled a room and simulation results were delivered as ten-inch-thick printouts, the industry has
recognized the necessity to write good software; for example, many of the procedures invented in the 1960s to
program the digital control system of the lunar module’s Guidance and Navigation system1, such as state-space
modeling and optimal control techniques, are now a standard part of today’s software engineering process. Software
developers have continued to hone the art with planning methods, tracking metrics, and development tools2, to the
point where aerospace uses some of the more disciplined processes running at the highest quality levels.

 In the 1960s and 1970s, the standard was to program in assembly code. As embedded hardware processors
became more powerful, the software that runs on them expanded to provide increasingly complex functionality. To
deal with this complexity, the software community adopted a higher level of abstraction, moving software writing
from the “machine” level to the “programming” level through languages like C and FORTRAN. Software engineers
learned this higher level of abstraction and then used automation (a compiler) to automatically create executable
software. Now we are seeing a move to the next level of abstraction (system-level design) and automation (code
generation), increasing the scale of systems that software engineering can tackle.

As the demand for high-integrity, safety-critical software intensifies, software engineering methodologies and tools
continue to improve efficiency and quality and enable developers to react more quickly to changing requirements.
The most recent methodologies, Extreme Programming and Agile Development, focus on improving
communication within organizations and with customers through working software rather than multitudes of
documents; writing tests very early in the process, even before any code is written; and starting projects with simple
designs that evolve to incorporate full capability3,4.

A review of the history reveals that four key principles have driven many improvements in software engineering:

• Communicate clearly
• Think in modules

* Marketing Director, Control Design, 3 Apple Hill Drive, AIAA Member

American Institute of Aeronautics and Astronautics

2

• Automate wherever possible
• Test early and often

Until recently, these principles were confined to software engineering departments. The control and signal

processing engineers often failed to understand, appreciate, or embrace these techniques, causing inefficiencies and
friction between the groups. For example, the control and signal processing engineers would talk of “throwing specs
over the wall,” a way of saying that they did not know what was happening in the software world. This lack of
awareness of the principles that drive good software design is easy to understand: frequent testing between
algorithm and software development is impractical when physical prototypes are prohibitively expensive or
unavailable; ambiguous paper specifications impede communication; and automation is limited when there is a lack
of tools to support it.

The latest graphical modeling tools and techniques have fundamentally changed embedded system design

methodology by putting modeling and simulation at the center of system design. The result, Model-Based Design,
brings the sound principles of software development into the world of the control and signal processing engineer.

II. Working with Model-Based Design

Model-Based Design is not a process per se, but has been applied in many different design flows, from the “V”

diagram to the waterfall and the spiral. It can begin as soon as project requirements are available. These are captured
in a block diagram model that encapsulates all system dynamic characteristics, including environmental components
such as actuators, sensors, mechanical devices, electronics, and other physical elements.

 During requirements capture the model is an idealized representation of the system. Details are added as the
design progresses until the model becomes an “executable specification” that includes all the information needed to
specify the software or hardware implementation, including fixed-point and timing behavior. Because the model is
also the documentation, designs can pass directly from the desktop to pilot training simulations without introducing
errors and with minimal manual effort. And because the model is an executable specification, engineers can
automatically generate code from the model for real-time prototyping and deployment in the target system. Like the
model, the code can be tested and verified at any point. Problems are easily corrected by adjusting the model and
regenerating the code, maintaining specification integrity between the model and the code.

The new generation of graphical tools—for example, the Simulink® product family from The MathWorks—
provide unified modeling environments that include interactive graphical editors, graphical debuggers, and tools for
model analysis and diagnostics5. Their customizable block libraries enable engineers to accurately design, simulate,
implement, and test control, signal processing, communications, and other time-varying systems. Complex designs
are more easily managed because the designer can segment models into hierarchies of design components and break
them down into functional elements of arbitrary size and structure. Designers can achieve multiple levels of model
fidelity simply by substituting one model element for another. This approach streamlines large-scale system
development by letting multiple design teams work in parallel to refine and optimize subsystem design.

Organizations that have adopted Model-Based Design report spectacular results: the flawless functioning of

thousands of lines of automatically generated flight-control code, productivity improvements of 500%, development
time cut in half6. Results like these are possible not only because Model-Based Design offers a development
paradigm that improves development speed, communication, and efficiency, but also because it fosters good design
practices at every stage, from requirements capture and design to implementation and test.

III. Applying Software Design Principles
The four key principles of software engineering discussed above are evident within Model-Based Design. For

those using Model-Based Design, these principles are naturally encouraged through the development tools within an
organization. Here we review each of the principles and look at how Model-Based Design fosters them in aerospace
applications.

A. Communicate Clearly

American Institute of Aeronautics and Astronautics

3

Good communication within and across teams is critical when requirements are evolving and technology is being
developed for the first time, as is typical in aerospace applications. In a traditional design process, documents are the
primary means to communicate requirements, specifications, test scenarios, data definitions, and other project
details. Document-based approaches are subject to ambiguity and misinterpretation. They encourage a flow that is
unidirectional, preventing rapid iteration of a design and reinforcing the wall between software development and
algorithm design.

Software methodologies such as Extreme Programming address this problem in two ways: by having

programmers work closely together within teams and by making the primary communication vehicle of a team’s
output working code, not documents3.

Model-Based Design applies the same principles to control design and signal processing because it is predicated

on an executable, graphical model being the repository of design information. Using graphical diagrams instead of
textual code for the design and implementation improves communication within and among design teams.

Most development processes can be broken down into four phases, as shown in Figure 1: Requirements and

Specification, Design, Implementation, and Test and Verification. The model is a key communication vehicle in
each phase. Starting as a closed-loop system that captures requirements, it receives design input through multiple
design iterations, is further refined with detailed software engineering constructs appropriate to the target processor;
and incorporates static and dynamic test vectors and acceptance criteria. In short, the model is the specification, the
design, the implementation, and the test cases.

In addition to streamlining communication between project phases, graphical diagrams are easier to scan and

read than text documents because they are much less ambiguous. A system requirement can easily be omitted from a
document by accident. When system behavior is being captured in an executable model, however, the designer is
forced to provide enough detail for the system to be simulated, ensuring that major requirements are included. Even
if a system is simply a “stub” node, the designer will have made a conscious effort to build that stub and will not
simply have forgotten about it.

For example, consider an aircraft automatic landing system that uses a radar altimeter as one of its components.

The guidance algorithms and the radar altimeter are being developed by separate groups working in parallel. The
group that is developing the guidance algorithms to keep the aircraft on the desired glideslope to the runway doesn’t
yet know the detailed dynamics and characteristics of the radar altimeter. For this example, let’s assume there is
concern over the reliability of the radar altimeter signal.

A high-level model of the system is built so that the guidance group can proceed. They build a “stub” model of

the radar altimeter called “Radar Altimeter”. Because of the concern over the quality of the data from this system,
they add to this a “signal quality” output and build this signal into their processing algorithm, making sure that it has
the proper data update rate and so forth. The Radar Altimeter block can now be the interface specification for the
radar group to build to. There is no ambiguity in this specification. The signal dimensions, data types and data rate
are all inherent in the signal definition, since a working simulation is involved. This is in contrast to paper
specifications, which could easily omit important details. Aerospace systems typically involve this type of
coordination between multiple engineering disciplines.

American Institute of Aeronautics and Astronautics

4

B. Think in Modules
Software developers know that complexity can be reduced by building clear and simple modules that serve

specific purposes. Newer software development techniques like Extreme Programming tell us that designs should be
a simple as possible while supporting the required functionality3, and standard software metrics such as cyclomatic
complexity encourage reduction of the number of paths through a software module2.

Model-Based Design fosters modularity because it begins with a working (simulatable) model and because the

APIs between subsystems are rigorously defined. Graphical models are typically hierarchically organized to hide
complexity on the computer screen. This naturally fosters a modular approach: The limitations of a typical computer
screen encourage the designer to organize the blocks and systems on the screen into a hierarchy of subsystems. With
a text-based programming language, on the other hand, the designer might continue to write code in a linear fashion,
scrolling through page after page until it is difficult to see the important sections of the program.

A modular approach does not force the designer to work at a high level of abstraction. The level of detail

included in the modules can be adapted to the phase of design work. In early phases, simple subsystems revealing
only a shell of the actual algorithms will be built. In later phases, detailed algorithms incorporating target-specific
information will be included. But even at the final stages of a project, the team should still be able to view the initial,
simple design at the high levels of the hierarchical model.

 Consider the model for a missile system with an electrically powered control fin actuator. Figure 2 shows the
airframe dynamics, including the control actuator. This model is implemented in Simulink5 and Stateflow®7. It
shows a configurable subsystem being used to encapsulate the details of the actuator. Note that the currently selected
actuator model is a second-order linear model. Other subsystems for the aerodynamic, equations of motion, and
autopilot are also shown. Figure 3 shows details of two of the three options for actuator models.

A typical project might start with a simple linear actuator for initial design to work out the overall control

scheme. As the project moves into design, more detailed non-linear actuator models might be employed. For final
system sizing, a detailed electrical model of the motor would be built to determine if the actuator has the torque and
bandwidth to meet the needs of the control system. Because all these models conform to the API that was built with
the original, simple model, test cases built early in the process can be reused throughout the design.

Model elaboration

Continuous verification

Design ImplementationRequirements
and Specs

Test and
Verification

Figure 1. Model-Based Design enables communication between project phases via models.

American Institute of Aeronautics and Astronautics

5

Figure 3. A simple and detailed missile flight control actuator model share the same standard
interface as the rest of the model.

Figure 2. Modularity encapsulates detail and standard APIs to enable varying levels of fidelity.
In this generic missile model, the arrow shows a single subsystem with a defined interface linked
to three different actuator models used at different development stages.

American Institute of Aeronautics and Astronautics

6

C. Automate wherever possible
Automation not only saves time; it applies rules and processes consistently across a software application much

more effectively than a human team. The most dramatic improvements in software engineering have come through
automation. Using a compiler and linker to automate the generation of machine code from a higher level language
like C enabled software engineers to produce working systems in less time. Other automation areas, like generating
documentation automatically, checking coding style, and developing unit tests, continue to evolve.

Model-Based Design embraces automation primarily through automatic code generation from models. Generated

code can be used for a number of purposes, including simulation, real-time rapid prototyping, hardware-in-the-loop
simulator implementations, and final flight code development. Software elements, such as discretized blocks, fixed-
point data types, and links to existing “legacy” code, are added to the design model according to the purpose of the
code. Model coverage and profiling tools then automatically analyze the model and generate code for test
completeness and performance. This code is generally ANSI or ISO C code, but it may include tailored sections for
interfacing with hardware device drivers or other software elements.

With Model-Based Design, the same models can be used to automatically generate design documentation as well
as the code. Standard APIs to the models can used to build tools to automatically check that models conform to
organizational style guidelines. In recent years, there have been significant efforts to develop standard guidelines for
users of Model-Based Design8.

An example of how automation improves coding efficiency is shown in Figures 4 and 5. This model

demonstrates "expression folding" performed by Real-Time Workshop®9. In this model, each block (gain, lookup
tables, relational operator, logic, and constant) is folded into the switch block operation. Expression folding
dramatically improves the efficiency and readability of the generated code. Note that the branches of the switch
block are conditionally executed, increasing CPU throughput.

This type of optimization is very valuable for an individual subsystem, but its effects are magnified when applied

to a large system model of 10s or 100s of thousands of blocks. Applying this optimization across a large model can
result in code that is more efficient than if it was hand-written by a large team. The reason this is true is that these
types of relatively simple optimizations (expression folder in this example) can be applied consistently, through
automation, to the entire project – something that is difficult to achieve through human interactions.

Figure 4. Typical switch logic subsystem with logical expressions and lookup tables.

American Institute of Aeronautics and Astronautics

7

D. Test Early and Often
 Modern software development principles focus on testing early. In fact, Extreme Programming advocates that
testing should be done “all the time3.” Other modern techniques, such as Test-Driven Development, talk about
building the tests before any code is written. In this process one would write tests, then write code, and then refine
the code10.

Test and verification of embedded systems is traditionally the final step before product delivery. Errors

uncovered this late often require looping back to early stages in the process, resulting in project delays and cost
overruns.

 Model-Based Design moves validation into the early part of the software development cycle, reducing the risk of
late error detection. Engineers can integrate tests into the models at every development stage and can quantify test
coverage of the model. This continuous verification and simulation helps identify errors early, when they are easier
and less expensive to fix, and streamlines final verification.

Model-Based Design encourages early testing behavior because a working (simulatable) model is built and

available at the very beginning of design work. Each time a model is simulated, it is essentially tested. And, if the
tests are built at the same time as, or even before, components, those tests verify the operation of the design as
development proceeds. Figure 6 shows how test cases and design models are used together to enable continuous
verification in a development process.

 /* Switch: '<Root>/Switch' incorporates:
 * Gain: '<Root>/Gain'
 * Lookup: '<Root>/Look-Up Table'
 * Lookup2D: '<Root>/Look-Up Table (2-D)'
 * RelationalOperator: '<Root>/Relational Operator1'
 * RelationalOperator: '<Root>/Relational Operator'
 * Logic: '<Root>/Logical Operator'
 * Constant: '<Root>/Constant1'
 * Constant: '<Root>/Constant'
 * Inport: '<Root>/In4'
 * Inport: '<Root>/In3'
 * Inport: '<Root>/In2'
 * Inport: '<Root>/In1'
 */
 if((rtP.UPPER >= rtU.In2) || (rtU.In2 <= rtP.LOWER)) {
 rtb_Switch = rt_Lookup(rtP.T1Break, 11, rtU.In1 * 2.0, rtP.T1Data);
 } else {
 rtb_Switch = rt_Lookup2D_Normal(rtP.T2Break, 3, rtP.T2Break, 3,
 rtP.T2Data, rtU.In3, rtU.In4);
 }
Figure 5. A portion of the code automatically generated from the model in Figure 4, with expression
folding optimization applied.

American Institute of Aeronautics and Astronautics

8

IV. Conclusion

Model-Based Design (Figure 7) is enabling aerospace companies to develop high-integrity software-oriented

systems through the use of executable graphical models and automatic code generation to:

• Define executable specifications
• Use multi-domain models to design embedded systems
• Generate code automatically
• Test and verify continuously

In this way, Model-Based Design fosters the four fundamental principles of good software design and puts them

within easy reach of control and signal processing system engineers.

Design tools and technologies continue to evolve, enhancing the ability of Model-Based design to accelerate

system engineering processes. Model-style and semantic-checking tools will enable increasingly effective and agile
management of requirements, specifications, and designs. The multi-domain simulation aspects of design will
continue to be important as systems add more integrated technologies, and test definition, execution and
management will remain critical to the verification and validation of safety-critical algorithms.

System
requirements

Component
test harnesses

Component
test harnesses

Coverage
report

Coverage
report

Integrated
test harnesses
with designs

Closed-loop
system model
Closed-loop

system model

System test harnessSystem test harness

System
architecture

System
architecture

Component
requirements
Component

requirements

Component
designs

Component
designs

Figure 6. With Model-Based Design, tests can be built in conjunction with component design
models, enabling verification throughout the development process.

American Institute of Aeronautics and Astronautics

9

Figure 7. Model-Based Design enables four key
technologies centered on executable, graphical
models.

American Institute of Aeronautics and Astronautics

10

References

1 Gran, Richard J. “Fly Me to the Moon: Then and Now.” MATLAB® News & Notes, Summer 1999.
http://www.mathworks.com/company/newsletters/news_notes/sum99/index/html

2 Pressman, Roger. Software Engineering: A Practitioner’s Approach. New York: McGraw-Hill, Inc., 1992.

3 Beck, Kent. Extreme Programming Explained. Reading, Massachusetts: Addison Wesley Longman, Inc., 2000.

4 Fowler, Martin. “The New Methodology.” http://www.martinfowler.com/articles/newMethodology.html

5 Simulink®, Software Package, Ver. 6.2.1, The MathWorks, Inc., Natick, MA, 2005.

6 MathWorks User Stories. http://www.mathworks.com/applications/controldesign/userstories.html

7 Stateflow®, Software Package, Ver. 6.2.1, The MathWorks, Inc., Natick, MA, 2005.

8 Erkkinen, T., “Model Style Guidelines for Flight Code Generation,” AIAA Modeling and Simulation Technologies
Conference, AIAA-2005-6216, AIAA, San Francisco, CA, 2005.

9 Real-Time Workshop®, Software Package, Ver. 6.2.1, The MathWorks, Inc., Natick, MA, 2005.

10 Vautier, Eric, and David Vydra. “Test-Driven Development.” http://www.testdriven.com/modules/news/

